Mesorhizobium Ciceri LMS-1 Expressing an Exogenous
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global-Level Population Genomics Reveals Differential Effects of Geography and Phylogeny on Horizontal Gene Transfer in Soil Bacteria
Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria Alex Greenlona, Peter L. Changa,b, Zehara Mohammed Damtewc,d, Atsede Muletac, Noelia Carrasquilla-Garciaa, Donghyun Kime, Hien P. Nguyenf, Vasantika Suryawanshib, Christopher P. Kriegg, Sudheer Kumar Yadavh, Jai Singh Patelh, Arpan Mukherjeeh, Sripada Udupai, Imane Benjellounj, Imane Thami-Alamij, Mohammad Yasink, Bhuvaneshwara Patill, Sarvjeet Singhm, Birinchi Kumar Sarmah, Eric J. B. von Wettbergg,n, Abdullah Kahramano, Bekir Bukunp, Fassil Assefac, Kassahun Tesfayec, Asnake Fikred, and Douglas R. Cooka,1 aDepartment of Plant Pathology, University of California, Davis, CA 95616; bDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089; cCollege of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia; dDebre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia; eInternational Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; fUnited Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509 Tokyo, Japan; gDepartment of Biological Sciences, Florida International University, Miami, FL 33199; hDepartment of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India; iBiodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, 10112 Rabat, Morocco; jInstitute National -
Desert Soil Microbes As a Mineral Nutrient Acquisition Tool for Chickpea (Cicer Arietinum L.) Productivity at Different Moisture
plants Article Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea (Cicer arietinum L.) Productivity at Different Moisture Regimes Azhar Mahmood Aulakh 1,*, Ghulam Qadir 1, Fayyaz Ul Hassan 1, Rifat Hayat 2, Tariq Sultan 3, Motsim Billah 4 , Manzoor Hussain 5 and Naeem Khan 6,* 1 Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; [email protected] (G.Q.); [email protected] (F.U.H.) 2 Soil Science Research Institute, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; [email protected] 3 LRRI, National Agricultural Research Centre, Islamabad 44000, Pakistan; [email protected] 4 Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan; [email protected] 5 Groundnut Research Station, Attock 43600, Pakistan; [email protected] 6 Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA * Correspondence: [email protected] (A.M.A.); naeemkhan@ufl.edu (N.K.) Received: 6 October 2020; Accepted: 13 November 2020; Published: 24 November 2020 Abstract: Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments. -
Molecular Characterization Among Strains of Chickpea Root Nodule Bacteria Isolated from Different Areas of Middle Gujarat
RESEARCH PAPER International Journal of Agricultural Sciences, June to December, 2009, Vol. 5 Issue 2 : 577-581 Molecular characterization among strains of chickpea root nodule bacteria isolated from different areas of middle Gujarat V.R. HINGE*, R.L. CHAVHAN1, Y.A. DESHMUKH2 AND S.N. SALUNKHE3 Department of Agricultural Botany, B.A. College of Agriculture, Anand Agricultural University, ANAND (GUJARAT) INDIA ABSTRACT Eighteen strains of Root nodule bacteria were collected from the chickpea plant, grown in different areas of middle Gujarat, viz., Anand, Dahod, Thasara, Arnej and Dhanduka. These strains were confirmed as Rhizobium by using different biochemical test and maintained their pure culture. Molecular characterization based on repetitive DNA sequence especially, ERIC sequence (Enterobacterial Repetitive Intergeneric Consensus) were done together with two known Rhizobium strains, one commercial culture (GSFC, Vadodara), five standard strains of Rhizobium and one standard strain of Agribacterium tumefacinus. The total of 320 no of amplicons was generated by using ERIC primer pair. The strain MTCC 4188 (Mesorhizobium ciceri) produced highest no of amplicons while strain MTCC 120 (Bradyrhizobium japonicum) showed a less no of amplicons. Data analysis of ERIC fingerprinting pattern clustered all RNB strains and standard strains into four major clusters as per their phylogenetic relationship. Majority of RNB strains (65 per cent) were closely related to the genus Mesorhizobium ciceri species and Mesorhizobium loti, while remaining 40 per cent RNB strains showed similarity to Rhizobium leguminosarum (MTCC 99) and Agrobacterium tumefaciens (MTCC 431). The ERIC-PCR fingerprinting could become a powerful tool for depicting the genetic diversity among eighteen RNB strains and standard strains. -
Specificity in Legume-Rhizobia Symbioses
International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). -
Characterization of Bacterial Communities Associated
www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5. -
Functional Genomics Approaches to Studying Symbioses Between Legumes and Nitrogen-Fixing Rhizobia
Review Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia Martina Lardi and Gabriella Pessi * ID Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-635-2904 Received: 9 April 2018; Accepted: 16 May 2018; Published: 18 May 2018 Abstract: Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen- deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia). Keywords: alpha-rhizobia; beta-rhizobia; symbiosis; transcriptomics; proteomics; metabolomics; flavonoids; root exudates; root nodule 1. Introduction Nitrogen fixation in agricultural systems is of enormous agricultural importance, as it increases in situ the fixed nitrogen content of soil and can replace expensive and harmful chemical fertilizers [1]. For over a hundred years, all of the described symbiotic relationships between legumes and nitrogen-fixing rhizobia were confined to the alpha-proteobacteria (alpha-rhizobia) group, which includes Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium [2]. -
Mesorhizobium Ciceri As Biological Tool for Improving Physiological
www.nature.com/scientificreports OPEN Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress Mohammad Shahid1*, Mohammad Saghir Khan1, Asad Syed2, Najat Marraiki2 & Abdallah M. Elgorban2,3 Fungicides among agrochemicals are consistently used in high throughput agricultural practices to protect plants from damaging impact of phytopathogens and hence to optimize crop production. However, the negative impact of fungicides on composition and functions of soil microbiota, plants and via food chain, on human health is a matter of grave concern. Considering such agrochemical threats, the present study was undertaken to know that how fungicide-tolerant symbiotic bacterium, Mesorhizobium ciceri afects the Cicer arietinum crop while growing in kitazin (KITZ) stressed soils under greenhouse conditions. Both in vitro and soil systems, KITZ imparted deleterious impacts on C. arietinum as a function of dose. The three-time more of normal rate of KITZ dose detrimentally but maximally reduced the germination efciency, vigor index, dry matter production, symbiotic features, leaf pigments and seed attributes of C. arietinum. KITZ-induced morphological alterations in root tips, oxidative damage and cell death in root cells of C. arietinum were visible under scanning electron microscope (SEM). M. ciceri tolerated up to 2400 µg mL−1 of KITZ, synthesized considerable amounts of bioactive molecules including indole-3-acetic-acid (IAA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, siderophores, exopolysaccharides (EPS), hydrogen cyanide, ammonia, and solubilised inorganic phosphate even in fungicide-stressed media. Following application to soil, M. ciceri improved performance of C. arietinum and enhanced dry biomass production, yield, symbiosis and leaf pigments even in a fungicide-polluted environment. -
Research Collection
Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms. -
Metaproteomics Characterization of the Alphaproteobacteria
Avian Pathology ISSN: 0307-9457 (Print) 1465-3338 (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20 Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar To cite this article: José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssusgallinae (De Geer, 1778), Avian Pathology, 48:sup1, S52-S59, DOI: 10.1080/03079457.2019.1635679 To link to this article: https://doi.org/10.1080/03079457.2019.1635679 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 03 Submit your article to this journal Jul 2019. Published online: 02 Aug 2019. Article views: 694 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 AVIAN PATHOLOGY 2019, VOL. 48, NO. S1, S52–S59 https://doi.org/10.1080/03079457.2019.1635679 ORIGINAL ARTICLE Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero a,b, Sandra Díaz-Sanchez a, Olivier Sparagano c, Robert D. Finn d, José de la Fuente a,e and Margarita Villar a aSaBio. -
Botany of Chickpea 3 Sobhan B
Botany of Chickpea 3 Sobhan B. Sajja, Srinivasan Samineni and Pooran M. Gaur Abstract Chickpea is one of the important food legumes cultivated in several countries. It originated in the Middle East (area between south-eastern Turkey and adjoining Syria) and spread to European countries in the west to Myanmar in the east. It has several vernacular names in respective countries where it is cultivated or consumed. Taxonomically, chickpea belongs to the monogeneric tribe Cicereae of the family Fabaceae. There are nine annuals and 34 perennial species in the genus Cicer. The cultivated chickpea, Cicer arietinum, is a short annual herb with several growth habits ranging from prostrate to erect. Except the petals of the flower, all the plant parts are covered with glandular and non-glandular hairs. These hairs secrete a characteristic acid mixture which defends the plant against sucking pests. The stem bears primary, secondary and tertiary branches. The latter two branch types have leaves and flowers on them. Though single leaf also exists, compound leaf with 5–7 pairs of leaflets is a regular feature. The typical papilionaceous flower, with one big standard, two wings and two keel petals (boat shaped), has 9 + 1 diadelphous stamens and a stigma with 1–4 ovules. Anthers dehisce a day before the flower opens leading to self-pollination. In four weeks after pollination, pod matures with one to three seeds per pod. There is no dormancy in chickpea seed. Based on the colour of chickpea seed, it is desi type (dark-coloured seed) or kabuli type (beige-coloured seed). Upon sowing, germination takes a week time depending on the soil and moisture conditions. -
2010.-Hungria-MLI.Pdf
Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers. -
Biserrula Pelecinus-Nodulating Mesorhizobium Sp
Symbiotic Effectiveness, Phylogeny and Genetic Stability of Biserrula pelecinus-nodulating Mesorhizobium sp. isolated from Eritrea and Ethiopia Amanuel Asrat Bekuma A thesis submitted for the degree of Doctor of Philosophy Murdoch University, Perth Western Australia June 2017 ii Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Amanuel Asrat Bekuma iii This thesis is dedicated to my family iv Abstract Biserrula pelecinus is a productive pasture legume with potential for replenishing soil fertility and providing quality livestock feed in Southern Australia. The experience with growing B. pelecinus in Australia suggests an opportunity to evaluate this legume in Ethiopia, due to its relevance to low-input farming systems such as those practiced in Ethiopia. However, the success of B. pelecinus is dependent upon using effective, competitive, and genetically stable inoculum strains of root nodule bacteria (mesorhizobia). Mesorhizobium strains isolated from the Mediterranean region were previously reported to be effective on B. pelecinus in Australian soils. Subsequently, it was discovered that these strains transferred genes required for symbiosis with B. pelecinus (contained on a “symbiosis island’ in the chromosome) to non-symbiotic soil bacteria. This transfer converted the recipient soil bacteria into symbionts that were less effective in N2-fixation than the original inoculant. This study investigated selection of effective, stable inoculum strains for use with B. pelecinus in Ethiopian soils. Genetically diverse and effective mesorhizobial strains of B. pelecinus were shown to be present in Ethiopian and Eritrean soils.