Oceans 11 Teaching Resources Vol 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats. -
Appendix S6 Benthic Habitat Mapping of the Darwin Region
Technical Appendix S6 Ichthys Gas Field Development Project: benthic habitat mapping of the Darwin region—methods of data collection, collation and map production Ichthys Gas Field Development Project: Benthic Habitat Mapping of the Darwin Region— Methods of data collection, collation and map production Rev 0 | 30 March 2011 INPEX Document No. C036-AH-REP-0121 Phone: +61 408 857 056 E-mail: [email protected] Address: 8/260 West Coast Highway Scarborough, WA Web: www.geooceans.com Table of Contents 1. Introduction.............................................................................5 2. Data collection methods ........................................................6 2.1. Towed video survey ................................................................................... 6 2.1.1. Field sampling ............................................................................................ 6 2.1.2. Video transects .......................................................................................... 6 2.1.3. Towed video system .................................................................................. 6 2.1.4. Video data analysis and habitat classification............................................ 7 2.1.5. Quality assurance and quality control ........................................................ 9 2.1.6. Bathymetry ................................................................................................. 9 2.1.7. Depth correction for tide.......................................................................... -
Tide Simplified by Phil Clegg Sea Kayaking Anglesey
Tide Simplified By Phil Clegg Sea Kayaking Anglesey Tide is one of those areas that the more you learn about it, the more you realise you don’t know. As sea kayakers, and not necessarily scientists, we don’t have to know every detail but a simplified understanding can help us to understand and predict what we might expect to see when we are out on the water. In this article we look at the areas of tide you need to know about without having to look it up in a book. Causes of tides To understand tide is convenient to imagine the earth with an envelope of water all around it, spinning once every 24 hours on its north-south axis with the moon on a line parallel to the equator. Moon Gravity A B Earth Ocean C The tides are primarily caused by the gravitational attraction of the moon. Simplifying a bit, at point A the gravitational pull is the strongest causing a high tide, point B experiences a medium pull towards the moon, while point C has the weakest pull causing a second high tide. Because the earth spins once every 24 hours, at any location on its surface there are two high tides and two low tides a day. There are approximately six hours between high tide and low tide. One way of predicting the approximate time of high tide is to add 50 minutes to the high tide of the previous day. The sun has a similar but weaker gravitational effect on the tides. On average this is about 40 percent of that of the moon. -
The C-Floor and Zones
The C-Floor and zones Table of Contents ` ❖ The ocean zones ❖ Sunlight zone and twilight zone ❖ Midnight and Abyssal zone ❖ The hadal zone ❖ The c-floor ❖ The c-floor definitions ❖ The c-floor definitions pt.2 ❖ Cites ❖ The end The ocean zones 200 meters deep 1,000 Meters deep 4,000 Meters deep 6,000 Meters deep 10,944 meters deep Sunlight zone Twilight zone ❖ The sunlight zone is 200 meters from the ocean's ❖ The twilight zone is about 1,000 meters surface deep from the ❖ Animals that live here ocean's surface sharks, sea turtles, ❖ Animals that live jellyfish and seals here are gray ❖ Photosynthesis normally whales, greenland occurs in this part of the Shark and clams ocean ❖ The twilight get only a faint amount of sunlight DID YOU KNOW Did you know That no plants live That the sunlight zone in the twilight zone could be called as the because of the euphotic and means well lit amount of sunlight in greek Midnight zone Abyssal zone ❖ The midnight zone is ❖ The abyssal zone is 4,000 meters from 6,000 meters from the the ocean's surface ocean’s surface ❖ Animals that live in ❖ Animals that live in the the midnight zone Abyssal zone are fangtooth fish, pacific are, vampire squid, viperfish and giant snipe eel and spider crabs anglerfish ❖ Supports only ❖ Animals eat only the DID YOU KNOW invertebrates and DID YOU KNOW leftovers that come That only 1 percent of light fishes That most all the way from the travels through animals are sunlight zone to the the midnight zone either small or midnight zone bioluminescent The Hadal Zone (Trench ● The Hadal Zone is 10,944 meters under the ocean ● Snails, worms, and sea cucumbers live in the hadal zone ● It is pitch black in the Hadal Zone The C-Floor The C-Floor Definitions ❖ The Continental Shelf - The flat part where people can walk. -
Maine Guide Training
Maine Guide Training 2021 History of Maine Guides ● First hired guides in Maine were Abenaki people who led European explorers, military officials, traders, priests and lumbermen. ● Guiding industry emerged in late 1900s as people in more urban and industrialized regions sought wilderness for recreation ● Cornelia “Fly Rod” Crosby was first guide licensed in 1897; 1700 others were licensed that year. Maine’s Legal Definition of “Guide” Any person who receives any form of remuneration for his services in accompanying or assisting any person in the fields, forests or on the waters or ice within the jurisdiction of the State while hunting, fishing, trapping, boating, snowmobiling or camping at a primitive camping area. Sea Kayaking Guide Specialization Guides can lead paddlesports trips on the State's territorial seas and tributaries of the State up to the head of tide and out to the three mile limit. This classification includes overnight camping trips in conjunction with those sea-kayaking and paddlesports. Testing Process 1. Criminal Background Check 2. Oral Examination ■ Chart and compass work ■ Catastrophic scenario 3. Written Examination (minimum score of 70 to pass) What Maine Sea Kayak Guides CAn Do ● Lead commercial sea kayaking and SUP trips on Maine’s coastal waters ● Lead overnight camping trips associated with these trips (new as of 2005) ● Lead trips with up to 12 people per guide What Sea Kayak Guides CAN’T Do ● Lead paddling trips on inland waters (by kayak, canoe, SUP or raft) ● Take clients fishing or hunting ● Lead trips that require another type of guide license What are the qualities that you most appreciated in guides you’ve encountered? ● Wilderness Guide Association’s Definition of a Guide A trained and experienced professional with a high level of nature awareness. -
Ocean Zones Adapted from USC Sea Grant “Island Explorers” by Dr
2011 COSEE-West Introduction to Ocean Zones Adapted from USC Sea Grant “Island Explorers” by Dr. Rachel Kennison, COSEE West Co- Director Grade: K-12 Group Size: 30 students Time: 55 minutes BACKGROUND In order to begin to understand life below the seafloor, it is essential to grasp that the ocean has many different habitats that are defined by the physical and chemical properties that exist at different depths. The purpose of this activity is to identify and describe different zones of the ocean and the organisms that live there. The ocean is divided into 5 main zones from the surface to the depths where light can no longer penetrate. These zones are characterized by different physical and chemical properties, such as quantity and quality of light, pressure and temperature. These properties affect what life forms can exist within those limitations. This activity introduces the microbial environment in the deep ocean, and can be the foundation to explain geothermal processes, and the evolution of bacteria. Labels and features to include on diagram: Photic (sunlit) zone Aphotic (no light) zone Neritic system Benthic realm Pelagic realm Bathyal zone Abyssal zone Hadal zone Shoreline Sea level Coral reef Continental Shelf Continental slope Continental rise Submarine Canyon Abyssal Plain Seamount Guyot Trench Mid-ocean Ridge Rift Valley Hydrothermal vent Sub-seafloor sediment Sub-seafloor aquifer A useful reference for your ocean zones diagram is at http://geosci.sfsu.edu/courses/geol102/ex9.html Two basic guides for the zones: (Source: Sea -
For Creative Minds
For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to ArbordalePublishing.com and click on the book’s cover to explore all the links. Deep Ocean Habitats Things change the deeper you go in the ocean: light disappears, temperatures grow increasingly colder, and pressure gets much higher. The amount of oxygen in the water sunlight zone decreases with depth but then gets higher again at the bottom! Because these changes twilight zone affect the types of organisms that can survive there, the ocean is divided into five layers by depth called life zones. Only the sunlight zone receives enough sunlight for algae to convert light into energy midnight zone (photosynthesis). Because almost all food webs start with plants or algae, this is the zone where the most animals live. The twilight zone still gets some sunlight, but not enough for photosynthesis. The animals that live here either travel to the sunlight zone to feed or depend on food falling from above. There is no light in the midnight zone. Most abyssal zone of the animals that live here produce their own light through bioluminescence. The abyssal zone is pitch black, almost freezing cold, and has little oxygen and incredibly high pressure, yet animals still live here. In the deep trenches is the hadal zone. It is like the abyssal zone, except with even more hadal zone immense -
Global Open Oceans and Deep Seabed (Goods) - Biogeographic Classification
CBD Distr. GENERAL UNEP/CBD/SBSTTA/14/INF/10 29 April 2010 ORIGINAL: ENGLISH SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Fourteenth meeting Nairobi, 10-21 May 2010 Item 3.1.3 of the provisional agenda * GLOBAL OPEN OCEANS AND DEEP SEABED (GOODS) - BIOGEOGRAPHIC CLASSIFICATION Note by the Executive Secretary 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice, IOC Technical Series No.84 on Global Open Oceans and Deep Seabed (GOODS) - Biogeographic Classification, submitted by the United Nations Educational, Scientific and Cultural Organization/Intergovernmental Oceanographic Commission, pursuant to paragraph 6of decision IX/20. 2. This report was also considered by the CBD Expert Workshop on Scientific and Technical Guidance on the Use of Biogeographic Classification Systems and Identification of Marine Areas Beyond National Jurisdiction in Need of Protection, held in Ottawa, from 29 September to 2 October 2009. 3. The document is circulated in the form and language in which it was received by the Secretariat of the Convention on Biological Diversity. * UNEP/CBD/SBSTTA/14/1 /... In order to minimize the environmental impacts of the Secretariat’s processes, and to contribute to the Secretary-General’s initiative f or a C-Neutral UN, this document is printed in limited numbers. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Edited by: Marjo Vierros (UNU-IAS), Ian Cresswell (Australia), Elva Escobar Briones (Mexico), Jake Rice (Canada), and Jeff Ardron (Germany) UNESCO 2009 goods inside 2.indd 1 24/03/09 14:55:52 Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Authors Contributors Vera N. -
Enon Valdez Oil Spill Restoration Project Final Report Site Specific
Enon Valdez Oil Spill Restoration Project Final Report Site Specific Archaeological Restoration at SEW-440 and SEW-488 Restoration Project 95007B Final Report Linda Finn Yarborough United States Department of Agriculture Forest Service Chugach National Forest 3301 C St., Suite 300 Anchorage, Alaska 99503 October 1997 Site Specific Archaeological Restoration at SEW440 and SEW488 Restoration Project 95007B Final Report Siw:The project effort was initiated under Restoration Project 94007B.An annual progress report was issued in January, 1995 by Yarborough, L., under the title Restoration ~ -1995. Theproject continued under Restoration Project 95007B, the subject of annual this report. A second progress report was prepared in September 1995 by Yarborough, L., under the title 1s Reuort. Seutember 1995. FY 95 wasthe last field season for this project. Data analysis and project report preparation took place in FY 96 and FY97.Papers were prepared for presentation and peer reviewed publication, and results were presented to the public in FY 97. Abstract: Project 94007 provided for restoration of two archaeological sites damaged during the Exxon Vuldez Oil Spill and its subsequent cleanup program. Test excavations were carried out at both SEW-440 and SEW-488 during 1994. Analysis and completion of excavations at SEW-488 took place in 1995. Analysis continued in 1996 and 1997. Each site was assessed in the field and mapped prior to testing. Data recovery work yielded both environmental and cultural information. Both sites appear to have been intermittently occupied, SEW-440 over a period of almost 2000 years, and SEW-488 for up to 3000 years. Artifact and zooarchaeological analyses resulted in information on prehistoric technology, subsistence, seasonality and site use. -
Tidal Theory
TIDAL THEORY By Phil Clegg, Sea Kayaking Anglesey Tide is one of those areas that the more you learn about it, the more you realise you don’t know. As sea kayakers (and dinghy sailors) and not necessarily scientists, we don’t have to know every detail but a simplified understanding can help us to understand and predict what we might expect to see when we are out on the water. Causes of Tide To understand tide it is convenient to imagine the earth with an envelope of water all around it, spinning once every 24 hours on its north-south axis with the moon on a line parallel to the equator. Moon Gravity A B Earth C Ocean The tides are primarily caused by the gravitational attraction of the moon. Simplifying a bit, at point A the gravitational pull is the strongest causing a high tide, point B experiences a medium pull towards the moon, while point C has the weakest pull causing a second high tide. Because the earth spins once every 24 hours, at any location on its surface there are two high tides and two low tides a day. There are approximately six hours between high tide and low tide. One way of predicting the approximate time of high tide is to add 50 minutes to the high tide of the previous day. The sun has a similar but weaker gravitational effect on the tides. On average this is about 40 percent of that of the moon. The main importance of the sun is the effect of either reinforcing the moon’s force or reducing it depending on their positions relative to each other. -
Ocean Temperature
Earth Science, 11e Ocean Water and Ocean Life Chapter 14 Composition of seawater Seawater consists of about 3.5% (by weight) dissolved minerals Salinity • Total amount of solid material dissolved in water • Typically expressed in parts-per-thousand (‰) • Average salinity is 35‰ • Major constituent is sodium chloride Relative proportions of water and dissolved components in seawater Figure 14.1 Composition of seawater Sources of sea salts • Chemical weathering of rocks • Outgassing – gases from volcanic eruptions Processes affecting seawater salinity • Variations in salinity are a consequence of changes in the water content of the solution Composition of seawater Processes affecting seawater salinity • Processes that decrease salinity (add water) • Precipitation • Runoff from land • Icebergs melting • Sea ice melting • Processes that increase salinity (remove water) • Evaporation • Formation of sea ice Composition of seawater Processes affecting seawater salinity • Surface salinity in the open ocean ranges from 33‰ to 38‰ Ocean temperature Surface water temperature varies with the amount of solar radiation received • Lower surface temperatures are found in high- latitude regions • Higher temperatures found in low-latitude regions Ocean temperature Temperature variation with depth • Low-latitudes • High temperature at the surface • Rapid decrease in temperature with depth (thermocline) • High-latitudes • Cooler surface temperatures • No rapid change in temperature with depth Variations in ocean water temperature with depth Figure 14.4 Ocean