Phytase and Other Phosphorus Reducing Feed Ingredients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytic Acid (Phytate)/ Total Phosphorus
www.megazyme.com PHYTIC ACID (PHYTATE)/ TOTAL PHOSPHORUS Measured as phosphorus released by phytase and alkaline phosphatase ASSAY PROCEDURE K-PHYT 05/19 (50 Assays per Kit) © Megazyme 2019 INTRODUCTION: Phytic acid (phytate; myo-inositol 1,2,3,4,5,6-hexakisphosphate) is the primary source of inositol and storage phosphorus in plant seeds contributing ~ 70% of total phosphorus. The abundance of phytic acid in cereal grains is a concern in the foods and animal feeds industries because the phosphorus in this form is unavailable to monogastric animals due to a lack of endogenous phytases; enzymes specific for the dephosphorylation of phytic acid. In addition, the strong chelating characteristic of phytic acid reduces the bioavailability of other essential dietary nutrients such as minerals (e.g. Ca2+, Zn2+, Mg2+, Mn2+, Fe2+/3+), proteins and amino acids.2 High phytic acid content feeds are generally supplemented with inorganic phosphate, however this causes increased faecal phosphate levels and subsequent eutrophication of waterways. Alternatively, supplementation with commercial phytases is becoming increasingly popular and reduces the requirement for inorganic phosphate supplementation as well as the associated environmental issues. Currently, there is no commercially available, simple, quantitative method for phytic acid and, while such measurement is relatively complex, the generally accepted AOAC Method 986.11 has limitations.3 For each individual analysis the method requires cumbersome anion-exchange purification and a major inherent assumption here is that only phytic acid is purified. While this assumption is viable for non-processed grains for which phytic acid comprises at least 97% of total inositol phosphates, it is not viable for processed foods and feeds which can contain higher levels of some lower myo-inositol phosphate forms (i.e. -
Effect of Ph and Temperature on the Activity of Phytase Products Used In
Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Effect of ph and Temperature on the Activity of ISSN 1516-635X Jul - Sept 2012/ v.14 / n.3 / 159-232 Phytase Products Used in Broiler Nutrition Author(s) ABSTRACT Naves L de P1 Corrêa AD2 The activity of three commercial microbial phytase (Aspergillus Bertechini AG3 oryzae, A. niger, and Saccharomyces cerevisae) products used in broiler Gomide EM4 Santos CD dos2 nutrition was determined at different pH (2.0 to 9.0) and temperature (20 to 90°C) values. Enzymatic activity was determined according to the reaction of the phytase with its substrate (sodium phytate), in four replicates, and was expressed in units of phytase activity (FTU). A. oryzae phytase exhibited optimal activity at pH 4.0 and 40°C, but 1Graduate student in Monogastric Nutrition of its absolute activity was the lowest of the three phytases evaluated. the Animal Science Department − Federal A. niger phytase exhibited maximal activity close to pH 5.0 and 45oC, University of Lavras (UFLA). whereas S. cerevisae phytase presented its highest activity at pH close to 2Professor of the Chemistry Department/ UFLA. 4.5 and temperatures ranging between 50 and 60°C. It was concluded 3Professor of the Animal Science Department/ that A. niger and S. cerevisae phytase products exhibited the highest UFLA. absolute activities in vitro at pH and temperature values (pH lower than 4Ph. D. student in Monogastric Nutrition of o the Animal Science Department/UFLA. 5.0 and 41 C) corresponding to the ideal physiological conditions of broilers, which would theoretically allow high hydrolysis rate of the phytate contained in the feed. -
Peraturan Badan Pengawas Obat Dan Makanan Nomor 28 Tahun 2019 Tentang Bahan Penolong Dalam Pengolahan Pangan
BADAN PENGAWAS OBAT DAN MAKANAN REPUBLIK INDONESIA PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN NOMOR 28 TAHUN 2019 TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS OBAT DAN MAKANAN, Menimbang : a. bahwa masyarakat perlu dilindungi dari penggunaan bahan penolong yang tidak memenuhi persyaratan kesehatan; b. bahwa pengaturan terhadap Bahan Penolong dalam Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 10 Tahun 2016 tentang Penggunaan Bahan Penolong Golongan Enzim dan Golongan Penjerap Enzim dalam Pengolahan Pangan dan Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 7 Tahun 2015 tentang Penggunaan Amonium Sulfat sebagai Bahan Penolong dalam Proses Pengolahan Nata de Coco sudah tidak sesuai dengan kebutuhan hukum serta perkembangan ilmu pengetahuan dan teknologi sehingga perlu diganti; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Badan Pengawas Obat dan Makanan tentang Bahan Penolong dalam Pengolahan Pangan; -2- Mengingat : 1. Undang-Undang Nomor 18 Tahun 2012 tentang Pangan (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 227, Tambahan Lembaran Negara Republik Indonesia Nomor 5360); 2. Peraturan Pemerintah Nomor 28 Tahun 2004 tentang Keamanan, Mutu dan Gizi Pangan (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 107, Tambahan Lembaran Negara Republik Indonesia Nomor 4424); 3. Peraturan Presiden Nomor 80 Tahun 2017 tentang Badan Pengawas Obat dan Makanan (Lembaran Negara Republik Indonesia Tahun 2017 Nomor 180); 4. Peraturan Badan Pengawas Obat dan Makanan Nomor 12 Tahun 2018 tentang Organisasi dan Tata Kerja Unit Pelaksana Teknis di Lingkungan Badan Pengawas Obat dan Makanan (Berita Negara Republik Indonesia Tahun 2018 Nomor 784); MEMUTUSKAN: Menetapkan : PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN. -
Final Dilution in Petri Plates with the Experiment, the Birds Were Weighed on Day-Of-Hatch and D 7, 10, Proper Culture Media, Tryptic Soy Agar (Biokar)
Symposium on Gut Health in Production of Food Animals November 10–12, 2014, St. Louis, Missouri Program and Abstracts www.GutHealthSymposium.com/2014 SYMPOSIUM ON GUT HEALTH IN PRODUCTION OF FOOD ANIMALS CONTENTS Welcome ............................................................................................................................3 Map ....................................................................................................................................4 Program .............................................................................................................................5 Poster Presentations......................................................................................................10 Abstracts .........................................................................................................................12 Poster Abstracts .............................................................................................................26 1 SYMPOSIUM ON GUT HEALTH IN PRODUCTION OF FOOD ANIMALS WELCOME On behalf of the Organizing Committee for the 3rd Symposium on Gut Health in Production of Food Animals, I welcome you to St. Louis, Missouri! I hope that the change in venue has made travel to the symposium easier and less expensive. Like the first two symposia organized around the topic of gut health in food animals, the aim this year is to bring together a group of scientists from academia, government, and industry to discuss the role of gut health in animal production and the essential -
<I>AUREOCOCCUS ANOPHAGEFFERENS</I>
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS Mohammad Moniruzzaman University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moniruzzaman, Mohammad, "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Moniruzzaman entitled "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation -
Solarbio Catalogue with PRICES
CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5 -
Phosphodiesterases
^ ^ ^ ^ I ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ � European Patent Office Office europeen des brevets EP 0 967 284 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI* C12N 15/55, C12N 9/16, 29.12.1999 Bulletin 1999/52 qq-) N 33/68, C12Q 1/44, C07 K 1 6/40 C 1 2 N 1 5/1 1 v(21)to i ;\ Appa hcation, ♦■ number:k 99303985.8QQinioQc fi ,' ,' A61 K 38/46, A61 K 35/00, (22) Date of filing: 21.05.1999 A61 K 48/00 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • Lanfear, Jeremy, c/o Pfizer Central Research MC NL PT SE Sandwich, Kent CT13 9NJ (GB) Designated Extension States: • Robas, Nicola Melanie, AL LT LV MK RO SI c/o Pfizer Central Research Sandwich, Kent CT13 9NJ (GB) (30) Priority: 28.05.1998 GB 9811500 30.10.1998 GB 9823882 (74) Representative: Harding, Charles Thomas et al 04.12.1998 GB 9826777 D. Young & Co. 09.04.1999 GB 9908247 21 New Fetter Lane 10.05.1999 GB9910801 London EC4A 1 DA (GB) (83) Declaration under Rule 28(4) EPC (expert Remarks: solution) The applicant has subsequently filed a sequence listing and declared, that it includes no new matter. (71) Applicants: • Pfizer Limited Sandwich Kent CT13 9NJ (GB) Designated Contracting States: GB • PFIZER INC. Groton, CT 06340 (US) Designated Contracting States: BE CH DE DK ES FI FR GR IE IT LI LU MC PT SE AT CY (54) Phosphodiesterases (57) Amino acid sequences and nucleotide se- SEQ ID No. -
Evalua on of the Apparent Phosphorus Diges Bility Coefficients of Inorganic
33 Evaluaon of the apparent phosphorus digesbility coefficients of inorganic feed phosphates for Tilapia (Oreochromis nilocus) By Caroline Biard, Product Manager, PHOSPHEA Phosphorus (P) is an essenal mineral in lapia (Oreochromis nilocus) is the were isonitrogenous and isolipidic. Ca:P fish feed as it is a component of hard most distributed and commercially was fixed at 0.92 (Table 1). The control ssues (bone, exoskeleton, scales, and cultured species globally (El‐Sayed, diet (CTRL) contained no IFP. The first teeth) and also DNA and phospholipids. It 2006). Several studies on P requirement test diet (DCP18) contained 1.8% of DCP18 is mainly supplied by feeding, since as have been reported. Yao et al. (2014) and the second test diet (MCP22.7) opposed to calcium (Ca), P content in observed opmal performances for Nile contained 1.35% of MCP22.7. Chromic natural water is low. Dietary deficiency of lapia with 8.6 g avP/kg DM. oxide was used as a market to determine P impairs metabolism resulng in Nevertheless only a few studies reported P digesbility. reduced growth and feed conversion. digesbility of IFP. Hua and Bureau Added IFP have been characterized in Various skeletal malformaons (2010) developed a P digesbility model table 2. They were finely ground just associated with reduced mineralizaon for Tilapia in which apparent digesbility before mixing with the other ingredients. of hard ssues also occur at subopmal P coefficient (ADC) of P was 93% for Ca Feed was pelleted (2‐3 mm), steamed intake (NRC, 2011). Fishmeal was a good mono basic/Na/K phosphate and 62% for and dried. -
Unravelling the Language of Phosphorus Utilization
Unravelling the language of phosphorus utilization Phosphorus (P), like other nutrients, is not fully absorbed No-phytic phosphorus and utilized by the animal in any feedstuff, including Phytate phosphorus has long been assumed to be inorganic feed phosphates. Accurate knowledge of the unavailable to monogastrics. Thus, the non-phytate P (i.e. P fraction which is utilized by the animal, or P value of inorganic feed phosphates) has been assumed to be fully an ingredient, is needed to formulate optimal diets for available, and therefore calculated as follows: No-Phytic livestock, maximise livestock production efficiency and P=Total P-Phytate P. However, it has been shown that, minimize P voiding. The P value can be calculated as due to the (1) intrinsic (dietary), (2) endogenous mucosal, the total P content times its “availability”. However the and (3) microbiota-associated phytases, monogastrics can high number of research techniques and concepts such partially degrade phytate. as bioavailability, digestibility, apparent digestibility, standard digestibility associated to phosphorus can generate confusion. The aim of this brochure is to create Digestible phosphorus It is the proportion of dietary P that has disappeared from clarity and avoid comparing apples with oranges when we the small intestine. It is measured by recovering the digesta talk about phosphorus in monogastric nutrition. at the terminal ileum. Relative bioavailability: This method assigns a biological value of 100% to a reference phosphate. The relative biological value of other test phosphates are determined by comparing the results obtained for a response criteria among all the P sources tested. Its value is expressed in relation to the biological value of a standard source used. -
2014 Annual Meeting Abstracts
Poultry Science Association 103rd Annual Meeting Abstracts To be presented July 14–17, 2014 Corpus Christi, Texas Also contains abstracts from the 2014 International Poultry Scientific Forum January 27–28, 2014 EDITOR-IN-CHIEF ® T. E. Porter (2016) POULTRY SCIENCE SECTION EDITORS ASSOCIATE EDITORS (2013–2014) Environment, Well-Being, N. Acar (2015) I. Hanning (2016) M. Pines (2014) and Behavior O. Adeola (2015) W. Huff (2014) T. Poole (2016) I. Estevez (2014) H. Ahmadi (2013) R. M. Hulet (2014) R. Poureslami (2015) M. M. Beck (2016) W. Alali (2016) M. Hume (2015) A. Pradhan (2014) T. J. Applegate (2015) A. Jackson-Davis (2016) G.-H. Qi (2015) Genetics C. Ashwell (2016) D. Jackwood (2014) G. Rajashekara (2014) J. Dodgson (2016) D. Babu (2015) P. A. Johnson (2016) V. Ravindran (2015) Immunology, Health, K. Bafundo (2016) C. Jones (2016) K. Reed (2016) and Disease M. R. Bakst (2014) P. Kaiser (2014) T. B. Rodenburg (2014) R. L. Taylor Jr. (2016) R. Beckstead (2016) I. Kang (2015) G. J. M. Rosa (2016) B. R. Behrends (2016) N. Kansaku (2016) W. B. Roush (2013) Metabolism and Nutrition L. Berghman (2014) E. Kebreab (2013) I. Rozenboim (2014) G. Cherian (2014) W. Berry (2014) E. J. Kim (2016) C. Ruiz-Feria (2013) M. Rodehutscord (2016) D. Biswas (2014) W. Kim (2016) S. M. Rutherfurd (2015) E. Esteve-Garcia (2014) J. Brake (2013) M. Koci (2015) M. Schilling (2015) K. Bregendahl (2014) K. W. Koelkebeck (2013) C. Schmidt (2016) Molecular, Cellular, B. Brehm-Stecher (2016) M. H. Kogut (2014) P. Selle (2013) and Developmental Biology J. -
Ileal Digestibility and Total Tract Retention of Phosphorus in Inorganic Phosphates Fed to Broiler Chickens Using the Direct Method
animals Article Ileal Digestibility and Total Tract Retention of Phosphorus in Inorganic Phosphates Fed to Broiler Chickens Using the Direct Method 1, 2, 1,3, Su Hyun An y, Jung Yeol Sung y and Changsu Kong * 1 Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; [email protected] 2 Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; [email protected] 3 Department of Animal Science, Kyungpook National University, Sangju 37224, Korea * Correspondence: [email protected]; Tel.: +82-054-530-1225 These authors contributed equally to this work. y Received: 2 September 2020; Accepted: 18 November 2020; Published: 20 November 2020 Simple Summary: There is limited information on the phosphorus (P) utilization of inorganic phosphates determined using the direct method in broiler chickens. The present study aimed to determine the ileal digestibility and total tract retention of P in several inorganic phosphates in broiler chickens using the direct method. No interaction was observed between the P source and the collection site (ileal digestibility vs. total tract retention). Phosphorus utilization differed among inorganic phosphates, and the ileal digestibility of P was greater than the total tract retention. Based on the current findings, different P utilization values should be applied to each inorganic phosphate. Abstract: The objective of this study was to determine and compare the phosphorus (P) utilization of inorganic phosphates fed to broiler chickens using the direct method. On day 15 of age, six hundred forty 15-day-old male Ross 308 broiler chickens (initial body weight = 399 38 g) were ± assigned to five experimental diets with 16 birds per cage in a randomized complete block design. -
Fingerprint Motifs of Phytases
African Journal of Biotechnology Vol. 12(10), pp. 1138-1147, 6 March, 2013 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1279 ISSN 1684–5315 ©2013 Academic Journals Full Length Research Paper Fingerprint motifs of phytases Cheng-Ming Fan1#, Ya-Hui Wang2#, Chang-Ying Zheng2 and Yong-Fu Fu1* 1MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China. 2College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China. Accepted 2 October, 2012 Phytate is the major form of phosphorus storage in plant seeds and the soil organic phosphorus. The phytase is a class of enzymes which catalyzes the hydrolysis of phytate and release free orthophosphoric acid. Motifs provide insight into protein structure, function and evolution. 39 fingerprint motifs were obtained in phytases through multiple EM for motif elicitation (MEME) analysis based on 54 whole phytase sequences with an average of 16.6% identity (ranging from 3.9 to 52.5%). The phytase family is classified into seven groups: HAPhys, PAPhys, BPPhys, BPRPhys, PTPhys, ALPhys and APPAs according to the phylogenetic analysis and motif characters. Every phytase group has its typical fingerprint motifs through motif alignment and search tool (MAST) results. Based on the phylogenetic tree and characteristics of phytase motif organisations, BPPhy family has 13 motifs, and is classified into five subgroups, BPPhy I to V. HAPhy with 11 motifs is classified into four subgroups, HAPhyI to IV. PAPhy, BPRPhy, PTPhy and APPAs have four, four, four and six fingerprint motifs, respectively, but no fingerprint motifs are found by MAST for ALPhys.