2016 Undetected Chemical Contaminant

Total Page:16

File Type:pdf, Size:1020Kb

2016 Undetected Chemical Contaminant 2016 Undetected Chemical Contaminant ESTROGENS AND OTHER HORMONES Diethylstilbestrol (DES) Estriol 17alpha-Estradiol Estrone 17beta-Estradiol 17alpha-Ethynl estradiol PERFLUORINATED COMPOUNDS N-ethyl Perfluorooctanesulfonamidoacetic acid Perfluorohexanesulfonic acid (PFHxS) N-methyl Perfluorooctanedsulfonamidoacetic acid Perfluorohexanoic acid (PFHxA) N-methyl Perfluorooctanedsulfonamidoacetic acid Perfluorolauric acid (PFDoA) Perfluorodecanoic acid (PFDA) Perfluoromyristic acid (PFTA) Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNA) INORGANIC CHEMICALS Beryllium Lanthanum Cadmium Lead Cerium Lutetium Cesium Mercury Cobalt Molybdenum Cyanide Neodymium Dysprosium Niobium Erbium Osmium Europium Palladium Gadolinium Platinum Germanium Praseodymium Gold Rhenium Hafnium Rhodium Holmium Rhodium Iridium Ruthenium NITROSAMINES N-Nitropyrrolidine (NPYR) N-Nitrosomorpholine N-Nitrosodi-N-butylamine (NDBA) N-Nitrosodiphenylamine N-Nitrosodimethylamine (NDMA) N-Nitrosodi-N-propylamine (NDPA) ORGANIC CHEMICALS Acenaphthene 1,2-Dichlorobenzene Acenaphthylene 1,3-Dichlorobenzene Acetaldehyde 1,4-Dichlorobenzene Acetochlor trans-1,2-Dichloro-2-butylene Acetone Dichlorodifluoromethane Acrylonitrile 1,1-Dichloroethane Alachlor 1,2- Dichloroethane Aldicarb (Temik) 1,1-Dichloroethylene Aldicarb sulfone 1,2-Dichloroethylene, cis Aldicarb sulfoxide 1,2-Dichloroethylene, trans Aldrin Di (2-chloroethyl) ether Allyl chloride Dichloromethane (methylene chloride) tert-Amyl Methyl ether 1,2-Dichloropropane Ametryn 1,3-Dichloropropane Anilizine 2,2-Dichloropropane Anthracene 1,1-Dichloropropene Aspon 1,3-Dichloropropene Atraton 1,1-Dichloropropylene Atrazine cis 1,3-Dichloropropylene Azinphos-ethyl trans 1,3-Dichloropropylene Azinphos-methyl Dicrotophos Bendiocarb Dieldrin Benfluralin Di (2-ethylhexyl) adipate Benzaldehyde Di (2-ethylhexyl) phthalate Benzene Diethylphthalate alpha-Benzene hexachloride Dimethoate beta-Benzene hexachloride Dimethylphthalate delta-Benzene hexachloride 2,4-Dinitrotoluene gamma-Benzene hexachloride (Lindane) 2,6-Dinitrotoluene Benzo(a)anthracene Di-n-octylphthatate Benzo(b)fluoranthene Dinoseb Benzo(k)fluoranthene 1,4 Dioxane Benzo(g, h, I)perylene Dioxathion Benzo(a)pyrene Diphenamid Benzyl chloride Diquat Bolstar Disulfoton Bromacil Disulfoton sulfone Bromobenzene Disulfoton sulfoxide Bromochloromethane Endosulfan I Bromoform Endosulfan II Bromomethane Endosulfan sulfate Butachlor Endothall 1,3-Butadiene Endrin 2-Butanone (MEK) Endrin aldehyde Butylate Epichlorohydrin tert-Butyl alcohol EPN n-Butylacrylate EPTC n-Butylbenzene Esfenvalerate sec-Butylbenzene Ethalfluralin tert-Butylbenzene Ethion Butylbenzylphthalate Ethofumesate Butyraldehyde (Butanal) Ethoprop Carbaryl Ethylacrylate Carbofuran Ethylbenzene Carbon disulfide Ethylene dibromide (EDB) Carbophenothion Ethyl ether Carbon Tetrachloride Ethyl methacrylate Carboxin Ethyl tert-butyl ether Chlordane Etridiazole Chlordane, alpha Famphur Chlordane, gamma Fenamiphos Chlorfenvinphos Fenarimol Cloroacetonitrile Fenitrothion Chlorobenzene Fenoxyprop-ethyl Chlorobenzilate Fensulfothion 2-Chlorobiphenyl Fenthion 1-Chlorobutane Fluazifop-butyl Chlorodibromoacetic Acid Fluchloralin Chloroethane Fluometuron Chloromethane Fluoranthene Chloroneb Fluorene Chloroprene Fluridone Chloropropylate Fonofos Chlorothalonil Formaldehyde 2-Chlorotoluene (o-) Glyoxal 4-Chlorotoluene (p-) Glyphosate (Round-up) Chlorpropham Heptachlor Chlorpyrifos Heptachlor epoxide Chlorpyrifos methyl Heptanal Chrysene 2,2',3,3',4,4',6-Heptachlorobiphenyl Clomazone Hexachlorobenzene Clopyralid 2,2',4,4',5,6'-Hexachlorobiphenyl Coumaphos Hexachlorobutadiene Crotonaldehyde Hexachloroethane Crotoxyphos Hexachlorocyclopentadiene Cyanazine Hexanal Cycloate 2-Hexanone Cyclohexanone Hexazinone 2,4-D 3-Hydroxycarbofuran DCPA Indeno(1,2,3-cd)pyrene 4,4'-DDD Iprodione 4,4'-DDE Isofenphos 4,4'-DDT Isophorone Dalapon Isopropylbenzene Decanal 4-Isopropyltoluene (p-) Deisopropylatrazine Leptophos Demeton O Lindane Demeton S Malathion Desisopropylatrazine Metalazyl Diazinon Methacrylonitrile Dibenzo(a,h)anthracene Methomyl Dibromoacetic acid Methoxychlor 1,2-Dibromoethane Methylacrylate Dibromomethane Methyl iodide (Iodomethane) 1-2 Dibromo 3 chloropropane (DBCP) Methylmethacrylate Di-n-butylphthalate 1-Methyl naphthalene Dicamba 2-Methyl naphthalene Dichlobenil Methyl paraoxon Dichlofenthion Methyl parathion Dichloran 4-Methyl-2-pentanone (MIBK) 2,3-Dichlorobiphenyl Methyl-t-butyl ether (MTBE) Dichlorvos Metolachlor (Dual) PHARMACEUTICALS & PERSONAL CARE PRODUCTS 9, 10-Anthracenedione Fluoxetine (Prozac) Antipyrine Gemfibrozil Atenol Ibuprofen Azithromycin Iopromide Bezafibrate Levothyroxine (Synthroid) Caffeine Lincomycin Carbadox Meprobamate Carbamazepine Monensin Chloramphenicol Naproxen Chlorotetracycline Narasin Clofibric acid Nicotine Cotinine Oleandomycin Dexamethasone Paraxanthine Diazepam Penicillin G Diclofenac Penicillin V Dilantin Prednisone Diltiazem Primidone Erythromycin PHENOLIC ENDOCRINE DISRUPTORS Bisphenol A 4-tert-Octylphenol Nonylphenol, isomer mix Pentachlorophenol 4-n-Octylphenol Phenylphenol List Progesterone cis-Testosterone trans-Testosterone Perfluorooctane sulfonate (PFOS) Perfluorocatanoic acid (PFOA) Perfluoroundecanoic acid (PFUnA) Perfluorobutanoic acid (PFBA) Samarium Selenium Silver Tantalum Tellurium Thallium Thorium Thulium Tin Titanium Tungsten Vanadium Ytterbium Zirconium N-Nitrosomethylethylamine (NMEA) N-Nitrosopiperdine (NPIP) Metribuzin (Sencor) Metsulfuron methyl Mevinphos MGK-264 isomer a MGK-264 isomer b MGK-326 Mirex Molinate Monobromoacetic Acid Monochloroacetic Acid Monocrotophos Naled Naphthalene 1-Naphthol Napropamide Nitrobenzene 2-Nitropropane cis-Nonachlor trans-Nonachlor Nonanal Norflurazon 2,2',3,3',4,5',6,6'-Octachlorobiphenyl Octanal Oryzalin Oxadiazon Oxamyl (Vydate) Oxychlordane Oxyfluorfen Paraquat Parathion Pebulate Pendimethalin Pentachlorobenzene Pentachloronitrobenzene 2,2',3',4,6-Pentachlorobiphenyl Pentachloroethane Pentachlorophenol PAHs(benzo(a)-pyrene) cis-Permethrin trans-Permethrin Phenanthrene Phorate Phosmet E-Phosphamidon Z-Phosphamidon Picloram (Tordon) Polychlorinated Byphenyls (PCB's), Total Profluralin Prometon Prometryn Pronamide Propachlor Propanil Propazine Propiconazole isomer a Propiconazole isomer b Propionaldehyde (Propanal) Propionitrile n-Propylbenzene Prothiofos Pyrene Pyruvaldehyde (Methylglyoxal) Silvex (2, 4, 5-TP) Simazine Simetryn Stirofos Styrene Sulfotep 2, 3, 7, 8-TCDD (Dioxin) Tebuthiuron TEPP Terbacil Terbufos Terbutryn 1,2,4,5-Tetrachlorobenzene 2,2',4,4'-Tetrachorobiphenyl 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran Thiabendazole Thiobencarb Thionazin Toluene Toxaphene 2,4,5-TP (Silvex) Triademefon Tribromoacetic Acid Tribufos Trichloroacetonitrile 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 2,4,5-Trichlorobiphenyl 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Trichloronate 1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluorethane Tricyclazole Trifluran 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene n-Valeraldehyde (Pentanal) Vernolate Vinclozolin Vinyl acetate Vinyl Chloride Xylene, total Roxithromycin Salicylic acid Salinomycin Sulfadiazine Sulfadimethoxine Sulfamerazine Sulfamethizole Sulfamethoxazole Sulfasalazine Sulthiazole Theobromine Theophylline Triclocarban Triclosan Trimethoprim Tylosin Virginiamycin M1 Tetrabromobisphenol A 2, 4, 6-Trichlorophenol.
Recommended publications
  • Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic
    Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic Substitution 1) Predict the product and draw the mechanism for electrophile generation for each of the following reactions. Cl (a) 2 FeCl3 HNO3 (b) H2SO4 SO (c) 3 H2SO4 2) Explain why reaction of benzene with Br2/FeBr3 results in the product bromobenzne instead of 5,6-dibromo-1,3-cyclohexadiene. 3) Predict the product and draw the active electrophile for each reaction shown below. Cl (a) AlCl3 Cl (b) AlCl3 Cl O (c) AlCl3 Page 1 of 13 Chem. 234 – Chapter 16 Problem Set 4) Explain why each of the following substrates do not undergo Freidel-Crafts reactions. NH2 NO2 N(CH3)3 NH 5) Arrange the following benzene substituents in order of reactivity in electrophilic aromatic substitution reactions. O Cl Ph Ph N Ph Ph H O N H S Ph N Ph Ph Ph O O 6) Predict the maJor products when the following benzene derivatives are treated to nitration conditions (HNO3/H2SO4). a. O Br b. NH2 Br c. NO2 Cl 7) Write the full electron pushing mechanism for the nitration of toluene. Page 2 of 13 Chem. 234 – Chapter 16 Problem Set 8) Predict the product(s) when each of the following benzene derivatives is treated to chloroethane and AlCl3. a. Br b. NH2 Cl c. OH Br d. OH Cl Cl e. NO2 Cl Cl f. Br Br g. SO3H Page 3 of 13 Chem. 234 – Chapter 16 Problem Set 9) Predict the product(s) when the following benzene derivatives are subjected to electrophilic chlorination conditions (Cl2, FeCl3).
    [Show full text]
  • United States Patent Office Patented Feb
    3,794,643 United States Patent Office Patented Feb. 26, 1974 1. 2 3,794,643 aZolinedione derivatives are produced by reacting the QUINAZOLINEDONE DERIVATIVES compounds having the following general formula: Takahiro Yabuuchi, Takarazuka, and Hajime Fujimura, Akira Nakagawa, and Ryuichi Kimura, Kyoto, Japan, assignors to Hisamitsu Pharmaceutical Co., Inc., Tosu, Saga Prefecture, Japan No Drawing. Filed Apr. 20, 1971, Ser. No. 135,693 int, C. C07, 51/48 U.S. C. 260-260 8 Claims ABSTRACT OF THE DISCLOSURE O The present invention relates to novel quinazolinedione R3 R2 derivatives possessing excellent anti-inflammatory action and analgesic action, and process for the production (wherein R2 and/or Rs have the same meaning as men thereof by reacting the compounds having the following 5 tioned above) with the general formula, RX or RSO, general formula, (wherein R represents the same substances as mentioned O above), R represents lower alkyl radical, and X repre C Sents halogen atom). Consequently, the reaction of the present invention can be understood as being alkylation. 20 The abovementioned compounds used as starting reac tion materials in the present invention can be obtained in good yield by reacting N-phenylanthranilic acid or N substituted phenylanthranilic acid with urea. The quinazolinedione derivatives used as the afore Rs R 25 said starting reaction materials include 1-phenyl-2,4- (1H,3H)-quinazolinedione or 1-substituted phenyl-2,4- (1H,3H)-quinazolinedione, for example, (wherein R and/or R3 represent hydrogen atom, CFs, 1-(3'-triuuoromethylphenyl-2,4(1H,3H)-
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET 1. Identification Product identifier Jump Start® Starting Fluid Other means of identification Product Code No. 05671 (Item# 1003843) Recommended use Starting fluid Recommended restrictions None known. Manufacturer/Importer/Supplier/Distributor information Manufactured or sold by: Company name CRC Industries, Inc. Address 885 Louis Dr. Warminster, PA 18974 US Telephone General Information 215-674-4300 Technical Assistance 800-521-3168 Customer Service 800-272-4620 24-Hour Emergency 800-424-9300 (US) (CHEMTREC) 703-527-3887 (International) Website www.crcindustries.com 2. Hazard(s) identification Physical hazards Flammable aerosols Category 1 Gases under pressure Compressed gas Health hazards Skin corrosion/irritation Category 2 Carcinogenicity Category 2 Specific target organ toxicity, single exposure Category 3 narcotic effects Aspiration hazard Category 1 Environmental hazards Hazardous to the aquatic environment, acute Category 2 hazard Hazardous to the aquatic environment, Category 3 long-term hazard OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Extremely flammable aerosol. Contains gas under pressure; may explode if heated. May be fatal if swallowed and enters airways. Causes skin irritation. May cause drowsiness or dizziness. Suspected of causing cancer. Toxic to aquatic life. Harmful to aquatic life with long lasting effects. Material name: Jump Start® Starting Fluid SDS US No. 05671 (Item# 1003843) Version #: 01 Issue date: 08-29-2017 1 / 10 Precautionary statement Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Do not spray on an open flame or other ignition source.
    [Show full text]
  • Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes
    Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes May 2013 Authors Mark Ferrey Contributors/acknowledgements The MPCA is reducing printing and mailing costs This report contains the results of a study that by using the Internet to distribute reports and characterizes the presence of unregulated information to wider audience. Visit our website contaminants in Minnesota’s lakes. The study for more information. was made possible through funding by the MPCA reports are printed on 100 percent post- Minnesota Clean Water Fund and by funding by consumer recycled content paper manufactured the U.S. Environmental Protection Agency without chlorine or chlorine derivatives. (EPA), which facilitated the sampling of lakes for this study. The Minnesota Pollution Control Agency (MPCA) thanks the following for assistance and advice in designing and carrying out this study: Steve Heiskary, Pam Anderson, Dereck Richter, Lee Engel, Amy Garcia, Will Long, Jesse Anderson, Ben Larson, and Kelly O’Hara for the long hours of sampling for this study. Cynthia Tomey, Kirsten Anderson, and Richard Grace of Axys Analytical Labs for the expert help in developing the list of analytes for this study and logistics to make it a success. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: tdr-g1-16 Contents Contents ...........................................................................................................................................
    [Show full text]
  • 1,2-DICHLOROETHANE 1. Exposure Data
    1,2-DICHLOROETHANE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-06-2 Chem. Abstr. Name: 1,2-Dichloroethane IUPAC Systematic Name: 1,2-Dichloroethane Synonym: Ethylene dichloride 1.1.2 Structural and molecular formulae and relative molecular mass Cl CH2 CH2 Cl C2H4Cl2 Relative molecular mass: 98.96 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid with a pleasant odour (Budavari, 1996) (b) Boiling-point: 83.5°C (Lide, 1995) (c) Melting-point: –35.5°C (Lide, 1995) (d) Solubility: Slightly soluble in water; miscible with ethanol, chloroform and diethyl ether (Lide, 1995; Budavari, 1996) (e) Vapour pressure: 8 kPa at 20°C (Verschueren, 1996) (f) Flash-point: 18°C, open cup (Budavari, 1996) (g) Conversion factor: mg/m3 = 4.0 × ppm 1.2 Production and use World production capacities in 1988 for 1,2-dichloroethane have been reported as follows (thousand tonnes): North America, 9445; western Europe, 9830; Japan, 3068; and other, 8351 (Snedecor, 1993). Production in the United States has been reported as follows (thousand tonnes): 1983, 5200; 1990, 6300; 1991, 6200; 1992, 6900; 1993, 8100 (United States National Library of Medicine, 1997). The total annual production in Canada in 1990 was estimated to be 922 thousand tonnes; more than 1000 thousand tonnes were produced in the United Kingdom in 1991 (WHO, 1995). –501– 502 IARC MONOGRAPHS VOLUME 71 1,2-Dichloroethane is used primarily in the production of vinyl chloride; 99% of total demand in Canada, 90% in Japan and 88% of total production in the United States are used for this purpose.
    [Show full text]
  • SAFETY DATA SHEET Ethyl Chloride
    SAFETY DATA SHEET Ethyl Chloride Section 1. Identification GHS product identifier : Ethyl Chloride Chemical name : chloroethane Other means of : Ethane, chloro-; Ethyl chloride; Muriatic ether; Monochloroethane; Hydrochloric ether; identification ether hydrochloric; 1-CHLOROETHANE; Ethyl chloride (Chloroethane); ethane, chloro; Monochlorethane; R 160 Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. Synonym : Ethane, chloro-; Ethyl chloride; Muriatic ether; Monochloroethane; Hydrochloric ether; ether hydrochloric; 1-CHLOROETHANE; Ethyl chloride (Chloroethane); ethane, chloro; Monochlorethane; R 160 SDS # : 001023 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas CARCINOGENICITY - Category 2 AQUATIC HAZARD (LONG-TERM) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. Suspected of causing cancer. Harmful to aquatic life with long lasting effects. May cause frostbite. May displace oxygen and cause rapid suffocation. May form explosive mixtures with air. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use.
    [Show full text]
  • USP Reference Standards Catalog
    Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction 1000408 Abacavir Sulfate R028L0 F1L487 (12/16) 188062-50-2 $222.00 (200 mg) 1000419 Abacavir Sulfate F0G248 188062-50-2 $692.00 Racemic (20 mg) (4-[2-amino-6-(cyclo propylamino)-9H-pur in-9yl]-2-cyclopenten e-1-methanol sulfate (2:1)) 1000420 Abacavir Related F1L311 F0H284 (10/13) 124752-25-6 $692.00 Compound A (20 mg) ([4-(2,6-diamino-9H- purin-9-yl)cyclopent- 2-enyl]methanol) 1000437 Abacavir Related F0M143 N/A $692.00 Compound D (20 mg) (N6-Cyclopropyl-9-{( 1R,4S)-4-[(2,5-diami no-6-chlorpyrimidin- 4-yloxy)methyl] cyclopent-2-enyl}-9H -purine-2,6-diamine) 1000441 Abacavir Related F1L318 F0H283 (10/13) N/A $692.00 Compound B (20 mg) ([4-(2,5-diamino-6-c Page 1 Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction hloropyrimidin-4-yla mino)cyclopent-2-en yl]methanol) 1000452 Abacavir Related F1L322 F0H285 (09/13) 172015-79-1 $692.00 Compound C (20 mg) ([(1S,4R)-4-(2-amino -6-chloro-9H-purin-9 -yl)cyclopent-2-enyl] methanol hydrochloride) 1000485 Abacavir Related R039P0 F0J094 (11/16) N/A $692.00 Compounds Mixture (15 mg) 1000496 Abacavir F0J102 N/A $692.00 Stereoisomers Mixture (15 mg) 1000500 Abacavir System F0J097 N/A $692.00 Suitability Mixture (15 mg) 1000521 Acarbose (200 mg) F0M160 56180-94-0 $222.00 (COLD SHIPMENT REQUIRED) 1000532 Acarbose System F0L204 N/A $692.00 Suitability
    [Show full text]
  • Toxicity Assessment of the Antimicrobial Triclocarban Using Sub-Lethal Behaviour and Reproduction Endpoints Melanie Raby Ryerson University
    Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2013 Toxicity Assessment Of The Antimicrobial Triclocarban Using Sub-Lethal Behaviour And Reproduction Endpoints Melanie Raby Ryerson University Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations Part of the Environmental Sciences Commons Recommended Citation Raby, Melanie, "Toxicity Assessment Of The Antimicrobial Triclocarban Using Sub-Lethal Behaviour And Reproduction Endpoints" (2013). Theses and dissertations. Paper 2017. This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact [email protected]. TOXICITY ASSESSMENT OF THE ANTIMICROBIAL TRICLOCARBAN USING SUB-LETHAL BEHAVIOUR AND REPRODUCTION ENDPOINTS by Melanie Raby Bachelor of Science (Honours) University of Waterloo, 2011 A thesis presented to Ryerson University in partial fulfillment of the requirement for the degree of Master of Applied Science in the Program of Environmental Applied Science and Management Toronto, Ontario, Canada, 2013 © MELANIE RABY, 2013 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, and accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public.
    [Show full text]
  • The 5 Stupidest Chemicals That Shouldn't Be in Your House (PDF)
    MARCH 2013 NRDC faCT SHEET FS:13-03-A The 5 Stupidest Chemicals That Shouldn’t be in Your House As you begin the annual spring cleaning purge, make sure that you aren’t leaving behind a house filled with toxic chemicals that can harm you, your family, and your pets. Get rid of the chemicals that harm more than they help. 1. ANTIBACTERIAL PRODUCTS 2. TOXIC FLAME RETARDANTS Soaps, cosmetics, cleansers, lotions, toothpaste and other Furniture foam is saturated with flame retardant chemicals products may carry an “antibacterial” label, but you are really that not only don’t stop furniture fires, but also make fires paying extra for unnecessary additives like triclosan and its more toxic by forming deadly gases and soot, the real killers chemical cousin triclocarban—which may be doing more in most fires. What’s worse, flame retardant chemicals are harm than good. Triclosan is found in over 80 percent of linked to real and measurable health impacts, including Americans’ bodies and exposure has been linked to allergies, lower IQs and decreased attention spans for children exposed impaired reproduction, hormone disruption, and weakened in the womb, male infertility, male birth defects, and early muscles. The U.S. Food and Drug Administration (FDA) puberty in girls. A recent study in animals linked flame admitted that triclosan is no more effective at preventing retardants to autism and obesity. illness than regular soap. Widespread use—in everything Americans carry much higher levels of flame retardants from cutting boards, yoga mats, bedding, soaps and gels— in their bodies than anyone else in the world, due in large could also be promoting drug-resistant bacteria.
    [Show full text]
  • Triclocarban
    Triclocarban sc-213106 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Triclocarban STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH0 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C13-H9-Cl3-N2-O, "carbanilide, 3, 4, 4' -trichloro-", "N-(4-chlorophenyl)-N' -(3, 4-dichlorophenyl)urea", "N-(3, 4-dichlorophenyl)-N' -(4-chlorophenyl)urea", "3, 4, 4' -trichlorodiphenylurea", triclocarban, "urea, N-(4-chlorophenyl)-N' -(3, 4-dichlorophenyl)-", Cusiter, Cutisan, "ENT 26925", Genoface, Procutene, NSC-72005, Solubacter, TCC, disinfectant Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 1 Toxicity: 0 Body Contact: 0 Min/Nil=0 Low=1 Reactivity: 1 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 8 EMERGENCY OVERVIEW RISK Limited evidence of a carcinogenic effect. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e. g. EYE ! Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).
    [Show full text]
  • Effect of Exposure to 3, 4, 4′-Trichlorocarbanilide (TCC
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2016 Effect of exposure to 3,4,4′-Trichlorocarbanilide (TCC) during critical developmental life stages Rebekah Charlene Kennedy University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Public Health Commons Recommended Citation Kennedy, Rebekah Charlene, "Effect of exposure to 3,4,4′-Trichlorocarbanilide (TCC) during critical developmental life stages. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/3864 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rebekah Charlene Kennedy entitled "Effect of exposure to 3,4,4′-Trichlorocarbanilide (TCC) during critical developmental life stages." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Comparative and Experimental Medicine. Jiangang Chen, Major Professor We have read this dissertation and recommend its acceptance: Robert Donnell,
    [Show full text]
  • Drinking Water Quality Results – Not-Detected Parameters
    Drinking Water Quality Results – Not-Detected Parameters The following water quality parameters were monitored in treated drinking water at the water treatment plants, but two-year median values are below laboratory detection limits. In a few cases, the parameter was only monitored at one of the water treatment plants and the two-year median result was non-detect. Pharmaceuticals and Household Products (78) 1,7-Dimethylxanthine Cloxacillin Iopromide Sarafloxacin 4-Nitrophenol Cotinine Lamotrigine Sulfachloropyridazine Acenaphthene DEET Lamotrigine metabolite Sulfadiazine Acetaminophen Dehydronifedipine Lincomycin Sulfadimethoxine Albuterol (Salbutamol) Dextromethorphan Lomefloxacin Sulfamerazine Ampicillin Dextrorphan Lufenuron Sulfamethazine Atenolol Diazepam Mebendazole Sulfamethizole Azithromycin Diclofenac Metformin Sulfamethoxazole BAM (septic additive) Digoxigenin Metoprolol Sulfanilamide Bupropion Digoxin Metroprolol Teflubenzuron Bupropion metabolite Diltiazem Miconazole Triclocarban Butilbatal Diphenhydramine Naproxen Triclosan Caffeine Enrofloxacin Norfloxacin Trimethoprim Carbamazapine Erythromycin Norvenlafaxine Metabolite Tylosin Carbamazepine Erythromycin Anhydrate Ofloxacin Venlafaxine Carbamazepine metabolite Flumequine Oxacillin Venlafaxine metabolite Cefotaxime Fluoxetine Oxolinic Acid Viginiamycin Cimetidine Gabapentin Oxycodone Warfarin Ciprofloxacin Gemfibrozil Ranitidine Clarithromycin Ibuprofen Roxithromycin Pesticides (185) 1,1-Dichloropropene Buprofezin Dinoseb 1,3-Dichloropropene Butachlor Dioxin 2,4,5-TP (Silvex)
    [Show full text]