Strip for Semiconductor Packages the Wieland Group

Total Page:16

File Type:pdf, Size:1020Kb

Strip for Semiconductor Packages the Wieland Group Strip for semiconductor packages The Wieland Group Europe Austria Greece Rolling mills and slitting centres Belarus Hungary North America Belgium Italy USA Croatia Poland Czech Republic Portugal Denmark Russia Finland Spain France Sweden Germany Switzerland Great Britain Turkey Wieland-Werke AG, Ulm, Germany Asia The Wieland Group, headquartered in Wieland supplies over 100 different China the southern German city of Ulm, is one copper alloys to customers in many India of the world’s leading manufacturers of different markets, first and foremost Japan semi-finished and special products in the electric and electronic sector, but Singapore copper and copper alloys: strip, sheet, other important consumers include the South Korea tube, rod, wire and sections as well as building trade, the automotive industry Taiwan slide bearings, finned tubes and heat and air-conditioning and refrigeration exchangers. engineering. The Company can trace its history right Wieland produces strip in all major back to the 19th century. Its founder, economic regions of the world: in Philipp Jakob Wieland, took over his Germany in the three rolling mills in uncle’s fine art and bell foundry in Ulm Vöhringen, Velbert-Langenberg and in 1820, and by 1828 he was already Villingen-Schwenningen. Further fabricating sheet and wire from brass. manufacturing companies are based South America Africa Australia in Great Britain, Singapore and the Brazil South Africa Today, Wieland’s output reaches about USA. A global network of slitting centres Colombia 500,000 tonnes a year in copper alloy ensures swift and flexible product products. The starting point of the deliveries worldwide. Wieland-Werke AG, Vöhringen, Germany production process is Europe’s biggest foundry for copper alloys at Wieland’s Vöhringen/Iller location. The Wieland Group has more than 6,500 employees in its manufacturing companies, slitting centres and trading firms in several European countries as well as the USA, South Africa, Singapore and China. Wieland-Werke AG, Velbert-Langenberg, Wieland-Werke AG, Villingen-Schwenningen, Germany Germany 2 Sites of the Wieland Group and its trading agencies Europe Austria Greece Rolling mills and slitting centres Belarus Hungary North America Belgium Italy USA Croatia Poland Czech Republic Portugal Denmark Russia Finland Spain France Sweden Germany Switzerland Great Britain Turkey Asia China India Japan Singapore South Korea Taiwan South America Africa Australia Brazil South Africa Colombia Wieland Metals, Inc. Wheeling, IL, USA Wieland Metals Shanghai Limited, Wieland Metals Singapore Pte Ltd., Shanghai, China Singapore 3 Leadframe strip for semiconductor packages Introduction • alloy and temper properties allowing to etch strips with high productivity The delivery program of the Wieland Group provides a broad • alloys with good solderability variety of alloys used for semiconductor packages, such as • tight dimensional tolerances strips for IC leadframes, strips for discrete packages as well • low internal tension allowing to stamp or etch high pin as for power transistors and heatspeaders. semiconductor frames with excellent lead co-planarity. Often high pin count IC leadframes are annealed after Requirements for leadframe strip used for stamping for better co-planarity of the leads requiring special IC’s & discrete packages softening resistant alloys & tempers. Further details on this are given in the data sheets for the various materials. Strips for IC leadframes and discrete semiconductor pack- ages call today for specially tailored copper alloys requiring the following properties: Requirements for copper strip used for heatspreader • special leadframe surface qualities to meet plating and wire bonding requirements • copper with very high electrical and thermal conductivity • material properties adjusted to today’s semiconductor • good surface properties to allow perfect plating and packaging assembly processes marking • high strength copper alloys allowing to produce matrix • good stamping and forming properties leadframes in large width • standardized alloys and tempers allowing high volume All of Wieland’s alloys offered for semiconductor packaging production and productivity applications meet the RoHS mandatory requirements. • softening resistant alloys suitable for high die bonding temperatures Material properties Wieland materials for semiconductor packages comply with and physical properties of Wieland alloys used in semi- established international standards such as EN, ASTM and JIS. conductor packaging. For further details kindly refer to the The following table provides an overview of the mechanical specific datasheets. Physical properties* Mechanical properties** Alloy EN UNS Chemical composition Electrical Thermal Tensile Yield Elon- Hard- (nominal) wt [%] conductivity conductivity strengh strengh gation ness [%] IACS [W/(mK)] [MPa] [MPa] A50 [%] HV 240–300 K09 Cu-OF C10100 Cu > 99.99 101 394 ≥ 180 ≥ 8 65–95 (Fullhard) 240–300 K32 Cu-ETP C11000 Cu > 99.99 100 390 ≥ 180 ≥ 8 65–95 (Fullhard) Ni 3 Si 0.65 Mg 0.15 608–725 K55 CuNi3SiMg C70250 40 190 550–650 ≥ 6 180–220 Cu balance (Halfhard) Sn 0.6 Ni 0.4 540–620 K62 – C18090 Cr 0.3 Ti 0.3 50 240 ≥ 450 ≥ 6 160–200 (Fullhard) Cu balance Fe 2.4 Zn 0.12 P 0.03 480–530 K65 CuFe2P C19400 60 280 ≥ 430 ≥ 4 140–160 Cu balance (Springhard) Cr 0.3 Si 0.02 Ti 0.1 530–610 K75 CuCrSiTi C18070 75 310 ≥ 460 ≥ 2 150–190 Cu balance (Springhard) Fe 0.1 P 0.03 360–440 K80 CuFeP C19210 90 350 ≥ 260 ≥ 3 100–130 Cu balance (Halfhard) * for reference only ** typical temper shown; for more details see alloy data sheets 4 Alloy performance table The following diagram shows typical Wieland leadframe alloys with information on temper range and electrical conductivity. 60 K09 / C10100 K32 / C11000 100 90 50 K80 / C19210 80 K75 / C18070 70 40 K65 / C19400 60 30 K62 / C18090 50 K55 / C70250 40 20 30 Electrical conductivity (MS/m) 20 Electrical conductivity (%/ACS) 10 10 0 0 200 400 600 800 Tensile strength / Rm (MPa) Typical applications The following table provides an overview of the usage of Wieland alloys within the semiconductor packaging industry. Application Heatspreader Integrated circuit (IC) Discrete BGA/LGA/PGA QFN QFP PLCC TSOP DIP SOT To-92 TO220 TO247 LED DPAK Package K09 • K32 • K55 • • • K62 • • K65 • • • • • • • K75 • • K80 • • • • • Pricing Besides the technical properties, price is of course an important criterion for the selection of a material. Here the value of the metal makes up a substantial part of the end price of the strip. Non-ferrous metals such as copper, nickel and tin are traded on commodity exchanges and are therefore subject to price fluctuations, which can be quite considerable. That’s why the price ratios among the various alloys are only valid for a specific date. 5 Your requirements – our solutions Leadframes Leadframes for IC or discrete semiconductors are either stamped or etched. Each process requires different strip properties. As such Wieland delivers optimized strip qualities for stamped and etched leadframes. While stamping qualities are typically delivered in a slightly oiled condition to enhance the stamping process, etched strips typically require dry surfaces. Both qualities require base materials with an optimized stress distribution in order to allow stamping and etching of high pin count leadframes with convincing results. Many new semiconductor packages like QFN require in their production half etching processes, meaning that the strip thickness is reduced by the etching medium. In order to achieve a proper solution even for such requirements special qualities have been developed to guarantee best half etching results. These qualities are limited to certain alloy/thickness combinations. Many of today’s discrete leadframes require a die bonding attachment process at temperatures exceeding 400 °C. In addition high pin IC leadframes are often annealed after stamping at temperatures exceeding 450 °C requiring special softening resistant alloys and tempers. For these applications Wieland developed special softening resistant alloys with convincing irreversible lengthening properties. Example: Softening resistance of Wieland-K75 K75 K75 160 180 150 170 140 160 Vickers Hardness after 130 150 heat treatment (typical values) 120 140 110 130 100 120 Temper R460 Temper R530 90 400 °C 110 400 °C 80 450 °C 100 450 °C ickers Hardness HV ickers Hardness 500 °C HV ickers Hardness 500 °C V 70 V 90 0 5 10 15 20 25 30 0 5 10 15 20 25 30 Time (min) Time (min) 6 Power transistors Surface of the milled strip Surface roughness Standard Tightend Power transistors combine typically a leadframe with an integrated heatspreader. As such contour milled materials Ra (of unmilled surface) < 0.20 μm < 0.16 μm are commonly used. In order to produce such profiles multiple Ra (of milled surface) < 0.40 μm < 0.20 μm processes are used within the industry, such as coining, milling, rolling and skiving. Sizes W Strip width 20–140 mm T1 Strip thickness 0.5–3.0 mm T2 Thickness of milled area ≥ 0.20 m Cw Width of milled channel 0.6–100 mm Angle of milling flanks ≥ 2° Micrograph section of a rolled profile strip: the deformation of the Tolerances structure is obvious Standard Tightend Cw ± 0.02 mm ± 0.01 mm R ± 0.05 mm ± 0.03 mm T1 ± 0.02 mm ± 0.01 mm T2 ± 0.012 mm ± 0.008 mm Micrograph section of ± 1º ± 1° a milled profile strip: the structure of the base material is the Guide values for dimensioning same R Cw α Milling shows the following benefits: Advantages for leadframe production • low stamping forces
Recommended publications
  • Plastic Packaging and the Effects of Surface Mount Soldering Techniques
    AN598 Plastic Packaging and the Effects of Surface Mount Soldering Techniques The heat from soldering causes a buildup of additional Author: John Barber stresses within the device that were not present from Surface Mount Technology Team the manufacturing process. Board level solder processes, such as IR reflow and Vapor phase reflow, are well-known areas where temperatures can reach PURPOSE levels sufficient to cause failure of the package This application note is intended to inform and assist integrity. A plastic semiconductor package forms a rigid the customers of Microchip Technology Inc. with system where the various components are locked Surface Mount Devices (SMD’s). The process of together. Differences in the physical expansion rate of packaging a semiconductor in plastic brings to pass a materials will result in internal package stresses somewhat unlikely marriage of different materials. In because the constituent parts cannot move. When a order to minimize potential adverse effects of surface package is heated, the stresses in the device are applied to the die in such a way that the maximum mount solder techniques, it is worthwhile to understand 1 the interaction of the package materials during the time areas of stress are at the corners. Forces can build to they are subjected to thermal stress. Understanding the point where the areas of adhesion between both the limits of thermal stressing that SMD’s can different components of the package give way causing withstand and how those stresses interact to produce device failure. Failure modes associated with excess failures are crucial to successfully maintaining stress include delamination of surfaces, fracturing of reliability in the finished product.
    [Show full text]
  • Heterogeneous Integration
    2.0 INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2.0 2015 EDITION HETEROGENEOUS INTEGRATION THE ITRS 2.0 IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT. ITRS 2.0 HETEROGENEOUS INTEGRATION CHAPTER: 2015 i ITRS 2.0 HETEROGENEOUS INTEGRATION CHAPTER: 2015 1 Table of Contents 01. Introduction.....................................................................................................................1614 12. Scope .............................................................................................................................1624 2Mission Statement .......................................................................................................................... 1636 33. Difficult Challenges.........................................................................................................1646 44. Single and Multi- Chip Packaging Overall Requirements ...............................................1658 5Electrical Requirements.................................................................................................................. 1668 6Interconnect................................................................................................................................................. 1679 7Cross Talk................................................................................................................................................... 1689 8Power Integrity.........................................................................................................................................
    [Show full text]
  • Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
    National Aeronautics and Space Administration Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication 15-4 2/15 National Aeronautics and Space Administration Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California NASA WBS: 724297.40.43 JPL Project Number: 104593 Task Number: 40.49.02.24 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov i This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. ©2015 California Institute of Technology. Government sponsorship acknowledged. Acknowledgments The author would like to acknowledge many people from industry and the Jet Propulsion Laboratory (JPL) who were critical to the progress of this activity. The author extends his appreciation to program managers of the National Aeronautics and Space Administration Electronics Parts and Packaging (NEPP) Program, including Michael Sampson, Ken LaBel, Dr. Charles Barnes, and Dr. Douglas Sheldon, for their continuous support and encouragement. ii OBJECTIVES AND PRODUCTS The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality.
    [Show full text]
  • 2.5D and 3D Semiconductor Package Technology: Evolution and Innovation
    As originally published in the IPC APEX EXPO Proceedings. 2.5D and 3D Semiconductor Package Technology: Evolution and Innovation Vern Solberg Solberg Technical Consulting Saratoga, California USA Abstract The electronics industry is experiencing a renaissance in semiconductor package technology. A growing number of innovative 3D package assembly methodologies have evolved to enable the electronics industry to maximize their products functionality. By integrating multiple die elements within a single package outline, product boards can be made significantly smaller than their forerunners and the shorter interconnect resulting from this effort has contributed to improving both electrical performance and functional capability. Multiple die packaging commonly utilizes some form of substrate interposer as a base. Assembly of semiconductor die onto a substrate is essentially the same as those used for standard I/C packaging in lead frames; however, substrate based IC packaging for 3D applications can adopt a wider range of materials and there are several alternative processes that may be used in their assembly. Companies that have already implemented some form of 3D package technology have found success in both stacked die and stacked package technology but these package methodologies cannot always meet the complexities of the newer generation of large-scale multiple function processors. A number of new semiconductor families are emerging that demand greater interconnect densities than possible with traditional organic substrate fabrication technology. Two alternative base materials have already evolved as more suitable for both current and future, very high-density package interposer applications; silicon and glass. Both materials, however, require adopting unique via formation and metallization methodologies. While the infrastructure for supplying the glass-based interposer is currently in development by a number of organizations, the silicon-based interposer supply infrastructure is already well established.
    [Show full text]
  • Classification of Semiconductor Package
    www.connect.co.jp www.jccherry.com Technical Data Classification of semiconductor package SIP ZIP Single In-line Package Zigzag In-line Package A package having leads on a single side of the body. A package having Zig-zag formed leads on a single side of the body. DIP PGA Dual In-line Package Pin Grid Array A package having leads in parallel rows A package having pins on top or bottom on two opposite sides of the body for face in a matrix layout of at least three through-hole insertion. rows and three columns. SDIP Shrink DIP A package which reduced the lead pitch of DIP. SOP SON Small Outline Package Small Outline Non-leaded Package A package having gull-wing-shaped leads A package having single-inline terminal on two opposite sides of the body. pads along two opposite edges of the bottom face. The terminal pads may or may not be exposed on the package sides. TSOP Thin SOP SOJ A package height of SOP exceeds 1.0 mm, Small Outline J-leaded Package and 1.2 mm or less. A package having J-shaped leads on two opposite sides of the body. SSOP Shrink SOP A package which reduced the lead pitch of SOP. 50-01 www.connect.co.jp www.jccherry.com Classification of semiconductor package QFP LGA Quad Flat Package Land Grid Array A package having gull-wing-shaped leads A package having lands on top or bottom on four sides of the body. face in a matrix of at least three rows and three columns.
    [Show full text]
  • Design for Flip-Chip and Chip-Size Package Technology
    As originally published in the IPC APEX EXPO Proceedings. Design for Flip-Chip and Chip-Size Package Technology Vern Solberg Solberg Technology Consulting Madison, Wisconsin Abstract As new generations of electronic products emerge they often surpass the capability of existing packaging and interconnection technology and the infrastructure needed to support newer technologies. This movement is occurring at all levels: at the IC, at the IC package, at the module, at the hybrid, the PC board which ties all the systems together. Interconnection density and methodology becomes the measure of successfully managing performance. The gap between printed boards and semiconductor technology (wafer level integration) is greater than one order of magnitude in interconnection density capability, although the development of fine-pitch substrates and assembly technology has narrowed the gap somewhat. All viable efforts are being used in filling this void utilizing uncased integrated circuits (flip-chip) and incorporating more than one die or more than one part in the assembly process. This paper provides a comparison of different commonly used technologies including flip-chip, chip-size and wafer level array package methodologies detailed in a new publication, IPC-7094. It considers the effect of bare die or die-size components in an uncased or minimally cased format, the impact on current component characteristics and reviews the appropriate PCB design guidelines to ensure efficient assembly processing. The focus of the IPC document is to provide useful and practical information to those who are considering the adoption of bare die or die size array components. Introduction The flip-chip process was originally established for applications requiring aggressive miniaturization.
    [Show full text]
  • Technology Trends and Future History of Semiconductor Packaging Substrate Material
    Review ⑥ Technology Trends and Future History of Semiconductor Packaging Substrate Material Yoshihiro Nakamura Shigeki Katogi Advanced Performance Materials Operational Headquarters New Business Development Headquarters Advanced Core Materials Business Sector Tsukuba Research Laboratory Frontier Technology Development Center The electronics industry has developed dramatically over the past half-century, primarily thanks to the semiconductor industry. Today, with increasing demand for smartphones and tablet computers, further high-volume, high speed, low power consumption LSIs and smaller/thinner semiconductor packages are strongly required. Meanwhile, the technical challenges involved in further fine pitch design shift the focus to assembly technology, which is considered the core technology required to achieve high-volume, high-integration semiconductor packages. Recently, the market for 3D semiconductor packages such as Package on Package (PoP), capable of stacking different IC packages such as memory and logic, is growing. Materials which have supported the development of such semiconductor packages include printed wiring board materials and semiconductor packaging materials. This report will introduce the history of printed wiring board materials and its technical trends in future. 1 Introduction The electronics industry started with the commercialization of transistors in the 1950s, and has since grown into a ¥45 trillion market. Since personal computers (PCs) were introduced in the market in the late 1980s, the Internet and cell phones have become ubiquitous, and smartphones and tablet computers are recently growing markets. Electronic components and materials have supported the development of the electronics industry. Japanese semiconductors and electronic devices account for 20% of international markets, while the share of electronic components and materials exceeds 40%, reflecting the fact that the superiority of Japanese high-function materials is approved by the international community.
    [Show full text]
  • Single Chip and Multi Chip Integration
    2019 Edition Chapter 8: Single Chip and Multi-Chip Integration http://eps.ieee.org/hir The HIR is devised and intended for technology assessment only and is without regard to any commercial considerations pertaining to individual products or equipment. We acknowledge with gratitude the use of material and figures in this Roadmap that are excerpted from original sources. Figures & tables should be re-used only with the permission of the original source. October, 2019 Table of Contents To download additional chapters, please visit Table of Contents http://eps.ieee.org/hir CHAPTER 1: HETEROGENEOUS INTEGRATION ROADMAP: OVERVIEW .......................................................................... 1 CHAPTER 2: HIGH PERFORMANCE COMPUTING AND DATA CENTERS ............................................................................. 1 CHAPTER 3: THE INTERNET OF THINGS (IOT) .................................................................................................................. 1 CHAPTER 4: MEDICAL, HEALTH & WEARABLES ............................................................................................................... 1 CHAPTER 5: AUTOMOTIVE ............................................................................................................................................ 1 CHAPTER 6: AEROSPACE AND DEFENSE ......................................................................................................................... 1 CHAPTER 7: MOBILE .....................................................................................................................................................
    [Show full text]
  • AN1040/D Prepared By: Bill Roehr
    APPLICATION NOTE www.onsemi.com Mounting Considerations For Power Semiconductors AN1040/D Prepared by: Bill Roehr INTRODUCTION the result is a much higher junction temperature than Current and power ratings of semiconductors are expected. If a rough heatsink surface and/or burrs around inseparably linked to their thermal environment. Except for the hole were displayed in the illustration, most but not all, lead−mounted parts used at low currents, a heat exchanger poor mounting practices would be covered. is required to prevent the junction temperature from exceeding its rated limit, thereby running the risk of a high PLASTIC BODY failure rate. Furthermore, the semiconductor industry’s LEADS field history indicated that the failure rate of most silicon PACKAGE HEATSINK semiconductors decreases approximately by one−half for a MICA WASHER decrease in junction temperature from 160°C to 135°C.(1) Guidelines for designers of military power supplies impose a 110°C limit upon junction temperature.(2) Proper mounting minimizes the temperature gradient between the semiconductor case and the heat exchanger. Most early life field failures of power semiconductors SPEED NUT EQUIPMENT (PART OF SOCKET) can be traced to faulty mounting procedures. With metal SOCKET FOR HEATSINK packaged devices, faulty mounting generally causes TO−213AA PACKAGE SHEET METAL SCREW unnecessarily high junction temperature, resulting in reduced component lifetime, although mechanical damage Figure 1. Extreme Case of Improperly Mounting a has occurred on occasion from improperly mounting to a Semiconductor (Distortion Exaggerated) warped surface. With the widespread use of various In many situations, the case of the semiconductor must plastic−packaged semiconductors, the prospect of be electrically isolated from its mounting surface.
    [Show full text]
  • AN11183 Mounting and Soldering of RF Transistors in Overmolded Plastic Packages Rev
    AN11183 Mounting and soldering of RF transistors in overmolded plastic packages Rev. 3 — 27 June 2019 Application note Document information Info Content Keywords Overmolded Plastic (OMP) packages, heat sink, footprint, surface mount, reflow soldering, component handling, exposed heat spreader, SMDP, NSMDP Abstract This application note provides a general mounting recommendation/guideline suitable for plastic overmolded packages AN11183 Mounting and soldering of RF transistors in overmolded plastic packages Revision history Rev Date Description AN11183#3 20190627 Overall revision, include new package platforms: PQFN/LGA. AN11183#2 20160302 Modifications: • The format of this document has been redesigned to comply with the new identity guidelines of Ampleon. • Legal texts have been adapted to the new company name where appropriate. AN11183#1 20121106 Initial version. Contact information For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales AN11183#3 All information provided in this document is subject to legal disclaimers. © Ampleon Netherlands B.V. 2019. All rights reserved. Application note Rev. 3 — 27 June 2019 2 of 36 AN11183 Mounting and soldering of RF transistors in overmolded plastic packages 1. Introduction 1.1 General (mounting recommendations RF power) This document is intended to guide and advice customers in ways how to solder overmolded packages RF Power transistors. Each customer has its own way of designing application boards and assembly of the devices, so therefore not possible to cover all specific requirements. 1.2 Definition The following words in this document: • “Heat sink” refers to the heat sink located under the PCB, the application heat sink forms the part of the thermal path that carries heat away from the device to the cooling air.
    [Show full text]
  • How to Properly Evaluate Junction Temperature with Thermal Metrics
    Application Report SLUA844B–December 2017–Revised March 2019 How to Properly Evaluate Junction Temperature with Thermal Metrics Andy Chen ABSTRACT With the technology development of the semiconductor process, the chip integration level continuously increases while the package size gets smaller, so the semiconductor devices face higher thermal stress challenges. The high junction temperature not only derate the device electrical characteristics, but increases the metal migration and other degeneration changes which cause accelerated aging and higher failure rate. According to the electronic design rules, every 10°C rise in temperature reduces the average life by 50%, so it is important to properly evaluate the thermal stress or junction temperature of the semiconductor devices. Contents 1 Common Thermal Metrics for Junction Temperature Estimation...................................................... 2 2 Why Thermal Resistance Parameters Are Often Misused ............................................................. 3 3 Using The ψ Thermal Characterization Parameter to Estimate Junction Temperature ............................ 7 4 About Temperature Measurement......................................................................................... 9 5 Conclusion .................................................................................................................. 10 6 References .................................................................................................................. 10 List of Figures 1 Older Device
    [Show full text]
  • Package Qualification Summary
    Package Qualification Summary Package: TO-92 Page 1 of 7 Package: Submitted by: Approved by: TO-92 Shawn Pottorf D. Robinson R1 10/18/2019 10/27/2020 Scope This document summarizes the Package Qualification and Reliability tests applied to the Central Semiconductor package specified. The tests performed are capable of inducing semiconductor device and packaging related failures. The objective of these harsh tests is to determine whether failures occur in an accelerated manner compared to normal use conditions for a representative sample size. Passing all appropriate reliability tests (no failures) for a representative sample size Qualifies the package. This Qualification Summary is a generic qualification for a range of use conditions and is not applicable at extreme use conditions, for example military applications, automotive under-the-hood applications, uncontrolled avionics environments, or 2nd level reliability considerations. Qualification Test Descriptions The description of Qualification Tests listed below are provided as a summary. Refer to the applicable specification indicated in parenthesis for additional details. External Visual Inspection (JESD22-B101) An examination of the external surfaces, construction, marking, and workmanship of a finished package or component. External visual is a noninvasive and nondestructive test. Physical Dimensions (JESD22-B100) The purpose of this test is to determine whether the external physical dimensions of the device, in all package configurations, are in accordance with the applicable procurement document. The physical dimensions test is nondestructive. Marking Permanency (JESD22-B107) – Only applicable for devices marked with ink The mark permanency test subjects package marking to solvents and cleaning solution commonly used for removing solder flux on circuit boards to ensure the marking will not become illegible.
    [Show full text]