Reconstruction and Analysis of Transcriptional Regulatory Networks with Trena

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction and Analysis of Transcriptional Regulatory Networks with Trena Reconstruction and Analysis of Transcriptional Regulatory Networks with TReNA Seth A. Ament Institute for Systems Biology Seattle, Washington Genes influence phenotypes through a network of networks Social Network Brain Connectivity Network Individual Neuronal Network Molecular Network DNA Transcriptional Regulatory Network Analysis (TReNA) Sequence Motifs DNase footprints Epigenomic States Evolutionary Conservation JASPAR ENCODE ROADMAP/FANTOM phastCons FootprintFinder Tissue-Specific TF Binding Sites Software Availability: https://github.com/PriceLab/TReNA Transcriptional Regulatory Network Analysis (TReNA) Sequence Motifs DNase footprints Epigenomic States Evolutionary Conservation JASPAR ENCODE ROADMAP/FANTOM phastCons FootprintFinder Tissue-Specific Tissue-Specific Transcriptome Profiles TF Binding Sites GTEx/GEO fitTRN Tissue-Specific Transcriptional Regulatory Network (TF-Target Gene Interactions) Software Availability: https://github.com/PriceLab/TReNA Combining diverse annotations improves prediction of TF binding sites 1.0 TRUE/FALSE classes: USF1 DNase footprints with/without USF1 ChIP-seq 0.8 peaks 0.6 All USF1 footprints: 79% sensitivity Sensitivity 31% specificity 0.4 USF1 footprints with 0.2 modeled probability > 50%: FIMO + Wellington + ChromHMM + phastCons 55% sensitivity FIMO p−value 70% specificity Wellington p−value 0.0 1.0 0.8 0.6 0.4 0.2 0.0 Specificity Combining TF binding sites and gene co-expression improves prediction of TFs’ functional target genes Co-Expression TF Binding Sites Ensemble 1.0 0.8 *** *** 0.6 OC R U 0.4 A 0.2 0.0 ble LASSO ARACNe Ensem Random Forest Combined TFBS Mutual Information Pearson Correlation TFBS count (0-1 kb) TFBS count (1-10TFBS kb) z-score (0-1 kb) TFBS z-score (1-10 kb) TFBS count (10-100 kb) TFBS count (100kb-1Mb)TFBS z-score (10-100 kb) TFBS z-scoreCombined (100kb-1Mb) Co−Expression shRNA-microarray profiling of 25 TFs in lymohoblasts Expression patterns of TFs accurately predict the expression patterns of thousands of genes in each tissue ) 2 (R Explained Explained Training Set Te s t S e t ( 5 -fold CV) Variance Variance Genes Ranked by R2 Prediction of brain gene expression with fitTRN Genome-scale TRN model for the human brain Input data • 4.6M predicted human brain TFBSs • 2,756 gene expression profiles from the Allen Brain Atlas Summary Statistics • 745 TFs • 11,093 target genes • 201,218 interactions (Ament et al., in prep.) (Ament et al, unpublished) TReNA reveals master regulator TFs and regulatory genetic variants in psychiatric disorders Master Regulator TFs (Stahl et al., in prep) Risk-associated SNP in PGC2-BD GWASPGC_BIP32b_mds7a.0.chr2 BD SCZ MDD p-value 1 0.8 0.6 0.4 0.2 0.1 1 . rs13026414 : Epilepsy(2E−9) snp / p / or / maf / info / directions a predicted POU3F2 SOX9 2 . rs2312147 : Schizophrenia(3E−7) a . rs57681866 / 5.00e−08 / 0.85 / 0.06 / 0.969 / 5−27−0 1e−28 3 . rs2717068 : Epilepsy(4E−7) 8 p = 5.0e−08 a ● ● SOX2 ● ●● ● ● binding site ● ● ● rs13384219 40 ● ● ● ● ● 1e−6 ● ● FOXJ1 6 ● logP) ● ● ● ● 6 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● − ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● FOXO1 1e−20 ● ●● 4 ●● (p-value) ● ● 4 ●● 20 PRRX1 Observed ( ● ● ● ● 10 ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● FOXN2 2 ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●●●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● ● ● ● ● ● ● ● 2 ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●●● ●● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●●● ● ●● ● ●● ●● ●●● ● ●●● ● ●● ● ● ●● ● ● ● ● ● ● -log ● ● ●● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● ●● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●●●● ● ● ●●●●● ● ● ● ● ● ● ●●●●●●●● ●● ● ●●●●●● ●● ● ● ● ● ● ●● ● ● ●●●● ●●● ●●●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● 1●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● HMBOX1 ● ● ● ●● 1● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●●● ● ●2● ● ● ● ●● ● ●● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ●●● ●● ●●● ● ●● 2● ● ●● ● ● ● ● ●●●● ● ● ●● ●●● ● ● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●●● ● ●●●●● ● ● ● ● ●●● ● ● ●●● ● ● ● ●● ● ● ● ● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ● ●●●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●●● ● ● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●●●● ●● ●●● ●●●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ●●● ●● ● ●●● ●● ● ● ●● ● ●● ● ● ●●●●● ● ● ● ●●● ●●● ● ●●● ● ●● ●● ●● ●● 3● ● ● ● ● ● ●●●● ●●●● ● ●● ●●●● ● ● ● ●● ●● ● ●●● ● ●● ● ● ● ● ● ●●● ● ●● ●● ● ●●● ● ●● ●● ● ●●●● ●●● ●●●● ●●● ●● ●● ● ● ● ●●●●● ● ●● ●● ● ● ●●●●● ●● ●●●● ● ●● ●● ● ● ●● ● 3● ● ●● ● ● ● ● ●● ●● ●●● ● ●● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ● ● ● ●●● ● ●● ● ● ●●●●●●●● ●●●● ● ●●●●●●●●● ●● ● ● ●●●● ●●● ●● ●● ● ●● ● ●● ●●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ●● ●●●● ●● ●●●●●● ●●● ● ● ● ● ● ● ● ● ● ● ●●●● ● ●● ●●● ● ●● ● ● ● ● ●● ●●● ●●●●● ●● ●●● ● ● ●●●● ● ● ● ●● ● ● ●● ●●● ●●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●●●● ●●● ● ●● ●●●●●●●●●●● ● ●● ● ● ●●●●● ● ●● ● ●●●●●●●●●●●●● ● ● ●● ● ●● ●● ● ● ● ●●● ● ● ● ● ● ●●●●● ●●●●● ●●●●● ●● ●● ●● ● ●●●●●●● ●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●● ●●● ●● ●●● ● ● ●●● ● ● ● ● ● ● ● ●● ● ●●●●● ●●●● ● ● ●●●●●●●● ●● ●●● ●● ● ● ●●●● ●● ● ●●● ●● ●● ● ●● ● ● ● ● ●● ●●●● ● ● ●●● ● ● 0 0 (cM/Mb) Recombination rate TEAD1 0 VRK2 POU3F4 VRK2 RUNX1 VRK2 NPAS3 IRF9 rs1338421957900 allele58100 and POU3F258300 expression influence SREBF1 Chromosome 2 (kb) POU3F2 the activity of the VRK2 promoter 1.5 PPARA FOXO4 FOXN3 1.0 OTX1 SMAD1 SOX3 0.5 BD SCZ MDD p-value Activity Luciferase SOX9 1e−2 0.0 SOX2 1e−6 rs13384219 A G FOXJ1 POU3F2 (ng) FOXO1 1e−20 0 0.25 1 4 0 0.25 1 4 PRRX1 FOXN2 HMBOX1 TEAD1 POU3F4 RUNX1 NPAS3 IRF9 SREBF1 POU3F2 PPARA FOXO4 FOXN3 OTX1 SMAD1 SOX3.
Recommended publications
  • Disruption of the Neuronal PAS3 Gene in a Family Affected with Schizophrenia D Kamnasaran, W J Muir, M a Ferguson-Smith,Dwcox
    325 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.40.5.325 on 1 May 2003. Downloaded from Disruption of the neuronal PAS3 gene in a family affected with schizophrenia D Kamnasaran, W J Muir, M A Ferguson-Smith,DWCox ............................................................................................................................. J Med Genet 2003;40:325–332 Schizophrenia and its subtypes are part of a complex brain disorder with multiple postulated aetiolo- gies. There is evidence that this common disease is genetically heterogeneous, with many loci involved. See end of article for In this report, we describe a mother and daughter affected with schizophrenia, who are carriers of a authors’ affiliations t(9;14)(q34;q13) chromosome. By mapping on flow sorted aberrant chromosomes isolated from lym- ....................... phoblast cell lines, both subjects were found to have a translocation breakpoint junction between the Correspondence to: markers D14S730 and D14S70, a 683 kb interval on chromosome 14q13. This interval was found to Dr D W Cox, 8-39 Medical contain the neuronal PAS3 gene (NPAS3), by annotating the genomic sequence for ESTs and perform- Sciences Building, ing RACE and cDNA library screenings. The NPAS3 gene was characterised with respect to the University of Alberta, genomic structure, human expression profile, and protein cellular localisation to gain insight into gene Edmonton, Alberta T6G function. The translocation breakpoint junction lies within the third intron of NPAS3, resulting in the dis- 2H7, Canada; [email protected] ruption of the coding potential. The fact that the bHLH and PAS domains are disrupted from the remain- ing parts of the encoded protein suggests that the DNA binding and dimerisation functions of this Revised version received protein are destroyed.
    [Show full text]
  • Transcription Factor P73 Regulates Th1 Differentiation
    ARTICLE https://doi.org/10.1038/s41467-020-15172-5 OPEN Transcription factor p73 regulates Th1 differentiation Min Ren1, Majid Kazemian 1,4, Ming Zheng2, JianPing He3, Peng Li1, Jangsuk Oh1, Wei Liao1, Jessica Li1, ✉ Jonathan Rajaseelan1, Brian L. Kelsall 3, Gary Peltz 2 & Warren J. Leonard1 Inter-individual differences in T helper (Th) cell responses affect susceptibility to infectious, allergic and autoimmune diseases. To identify factors contributing to these response differ- 1234567890():,; ences, here we analyze in vitro differentiated Th1 cells from 16 inbred mouse strains. Haplotype-based computational genetic analysis indicates that the p53 family protein, p73, affects Th1 differentiation. In cells differentiated under Th1 conditions in vitro, p73 negatively regulates IFNγ production. p73 binds within, or upstream of, and modulates the expression of Th1 differentiation-related genes such as Ifng and Il12rb2. Furthermore, in mouse experimental autoimmune encephalitis, p73-deficient mice have increased IFNγ production and less dis- ease severity, whereas in an adoptive transfer model of inflammatory bowel disease, transfer of p73-deficient naïve CD4+ T cells increases Th1 responses and augments disease severity. Our results thus identify p73 as a negative regulator of the Th1 immune response, suggesting that p73 dysregulation may contribute to susceptibility to autoimmune disease. 1 Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-1674, USA. 2 Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA. 3 Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. 4Present address: Department of Biochemistry and Computer Science, Purdue University, West ✉ Lafayette, IN 37906, USA.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • Regulation of Expression and Activity of the Bhlh-PAS Transcription
    Regulation of Expression and Activity of the bHLH-PAS Transcription Factor NPAS4 David Christopher Bersten B.Sc. (Biomedical Science), Honours (Biochemistry) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Discipline of Biochemistry School of Molecular and Biomedical Science University of Adelaide, Australia June 2014 1 Contents Abstract ................................................................................................................................................... 3 PhD Thesis Declaration ........................................................................................................................... 5 Acknowledgements ................................................................................................................................. 6 Publications ............................................................................................................................................. 8 Conference oral presentations ........................................................................................................... 9 Additional publications ....................................................................................................................... 9 Chapter 1: .............................................................................................................................................. 10 Introduction .....................................................................................................................................
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Deciphering the Nature of Trp73 Isoforms in Mouse
    cancers Article Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System Lorena López-Ferreras 1,2,†, Nicole Martínez-García 1,3,†, Laura Maeso-Alonso 1,2,‡, Marta Martín-López 1,4,‡, Ángela Díez-Matilla 1,‡ , Javier Villoch-Fernandez 1,2, Hugo Alonso-Olivares 1,2, Margarita M. Marques 3,5,* and Maria C. Marin 1,2,* 1 Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; [email protected] (L.L.-F.); [email protected] (N.M.-G.); [email protected] (L.M.-A.); [email protected] (M.M.-L.); [email protected] (Á.D.-M.); [email protected] (J.V.-F.); [email protected] (H.A.-O.) 2 Departamento de Biología Molecular, Universidad de León, 24071 León, Spain 3 Departamento de Producción Animal, Universidad de León, 24071 León, Spain 4 Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain 5 Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain * Correspondence: [email protected] (M.M.M.); [email protected] (M.C.M.); Tel.: +34-987-291757 Citation: López-Ferreras, L.; (M.M.M.); +34-987-291490 (M.C.M.) Martínez-García, N.; Maeso-Alonso, † Equal contribution. ‡ Equal contribution. L.; Martín-López, M.; Díez-Matilla, Á.; Villoch-Fernandez, J.; Simple Summary: The Trp73 gene is involved in the regulation of multiple biological processes Alonso-Olivares, H.; Marques, M.M.; Marin, M.C. Deciphering the Nature such as response to stress, differentiation and tissue architecture.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Chloride Channels Regulate Differentiation and Barrier Functions
    RESEARCH ARTICLE Chloride channels regulate differentiation and barrier functions of the mammalian airway Mu He1†*, Bing Wu2†, Wenlei Ye1, Daniel D Le2, Adriane W Sinclair3,4, Valeria Padovano5, Yuzhang Chen6, Ke-Xin Li1, Rene Sit2, Michelle Tan2, Michael J Caplan5, Norma Neff2, Yuh Nung Jan1,7,8, Spyros Darmanis2*, Lily Yeh Jan1,7,8* 1Department of Physiology, University of California, San Francisco, San Francisco, United States; 2Chan Zuckerberg Biohub, San Francisco, United States; 3Department of Urology, University of California, San Francisco, San Francisco, United States; 4Division of Pediatric Urology, University of California, San Francisco, Benioff Children’s Hospital, San Francisco, United States; 5Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Heaven, United States; 6Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States; 7Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 8Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States *For correspondence: Abstract The conducting airway forms a protective mucosal barrier and is the primary target of [email protected] (MH); [email protected] airway disorders. The molecular events required for the formation and function of the airway (SD); mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway [email protected] (LYJ) diseases,
    [Show full text]
  • KRAS Drives Immune Evasion in a Genetic Model of Pancreatic Cancer
    ARTICLE https://doi.org/10.1038/s41467-021-21736-w OPEN KRAS drives immune evasion in a genetic model of pancreatic cancer Irene Ischenko1, Stephen D’Amico1, Manisha Rao2, Jinyu Li2, Michael J. Hayman1, Scott Powers 2, ✉ ✉ Oleksi Petrenko 1,3 & Nancy C. Reich 1,3 Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate 1234567890():,; KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the sup- pression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment. 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA. 2 Department of Pathology, Stony Brook University, ✉ Stony Brook, NY, USA. 3These authors jointly supervised this work: Oleksi Petrenko, Nancy C. Reich. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:1482 | https://doi.org/10.1038/s41467-021-21736-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21736-w RAS is frequently associated with some of the deadliest and characterization of KRASG12D p53KO mouse cell lines forms of cancer.
    [Show full text]
  • Rb Family Proteins Differentially Regulate Distinct Cell Lineages During Epithelial Development Kathryn A
    Research article 4299 Rb family proteins differentially regulate distinct cell lineages during epithelial development Kathryn A. Wikenheiser-Brokamp Department of Pathology and Immunology, and Division of Molecular Oncology in the Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA e-mail: [email protected] Accepted 23 April 2004 Development 131, 4299-4310 Published by The Company of Biologists 2004 doi:10.1242/dev.01232 Summary pRb, p107 and p130 are important regulators of cell cycle cell types. Ablation of total Rb family function resulted and have extensive overlapping functions; however, only in opposing effects in specification along distinct cell Rb has been shown to be a bone fide tumor suppressor. lineages, providing evidence that pocket proteins inhibit Defining the overlapping versus distinct pocket protein neuroendocrine cell fate while being required for functions is therefore an important step to understanding differentiation in other cell types. These findings identify a the unique role of Rb. Using lung as a model, the present novel role for pocket proteins in cell fate determination, studies demonstrate that pocket proteins are important not and establish a unique cell lineage-specific function for Rb only in regulating cell cycle and survival but also in cell that explains, at least in part, why Rb and p16 are lineage specification. An inducible lung-specific Rb inactivated in phenotypically distinct carcinomas. knockout strategy was used to demonstrate that Rb is specifically required for restricting neuroendocrine cell fate Key words: Rb, p107, p130, Cre-LoxP system, Lung development, despite functional compensation for Rb deficiency in other CC10 Introduction overexpressed (Classon and Dyson, 2001; Harbour and Dean, The retinoblastoma protein (Rb) is a prototype tumor 2000).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-To-Postnatal Transition of Neurogenesis in the Olfactory Bulb
    9368 • The Journal of Neuroscience, June 22, 2011 • 31(25):9368–9382 Development/Plasticity/Repair Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb Benoit V. Jacquet,1 Nagendran Muthusamy,1 Laura J. Sommerville,1 Guanxi Xiao,1 Huixuan Liang,1 Yong Zhang,2 Michael J. Holtzman,2 and H. Troy Ghashghaei1 1Center for Comparative Medicine and Translational Research, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, and 2Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110 Establishment of a neural stem cell niche in the postnatal subependymal zone (SEZ) and the rostral migratory stream (RMS) is required for postnatal and adult neurogenesis in the olfactory bulbs (OB). We report the discovery of a cellular lineage in the SEZ-RMS-OB continuum, the specification of which is dependent on the expression of the forkhead transcription factor Foxj1 in mice. Spatially and temporally restricted Foxj1ϩ neuronal progenitors emerge during embryonic periods, surge during perinatal development, and are active only for the first few postnatal weeks. We show that the development of the unique Foxj1-derived lineage is dependent on Foxj1 expression and is required for overall postnatal neurogenesis in the OB. Strikingly, the production of neurons from Foxj1ϩ progenitors significantly declines after the early postnatal weeks, but Foxj1-derived neurons in the OB persist during adult periods. For the first time, our study identifies the time- and region-specific activity of a perinatal progenitor domain that is required for transition and progression of OB neurogenesis from the embryonic-to-postnatal periods.
    [Show full text]