Climate Change Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Assessment Inner Mongolia Sustainable Cross-Border Development Investment Program (RRP PRC 51192) CLIMATE CHANGE ASSESSMENT I. BASIC PROJECT INFORMATION Project Title: Inner Mongolia Sustainable Cross-Border Development Investment Program (Tranche 1) Project Cost Tranche 1- €345.14 million (€ million): Location: People’s Republic of China, Inner Mongolia Autonomous Region (IMAR) Sector: Regional Cooperation and Integration Theme: Industry and trade, water and other urban infrastructure and services Brief Description: The proposed Inner Mongolia Sustainable Cross-Border Development Investment Program (Investment Program) is a Multitranche Financing Facility (MFF) in border areas in IMAR with Mongolia. Geographically, Tranche 1 includes: (i) Erenhot Municipality, and (ii) Baotou Municipality. The outputs of the Investment Program include: (i) sustainable infrastructure for cross-border connectivity and health services improved; (ii) ecological environment in key border towns improved; (iii) income-generating opportunities expanded; and (iv) cross-border cooperation mechanisms, technical project management, and institutional capacity strengthened. There are three civil infrastructure subprojects proposed for the Investment Loan Component in Tranche 1, including: (i) Erenhot Subproject: It is located in Erenhot and includes three infrastructure activities: (a) inspection area construction for the PRC–Mongolia Erenhot– Zamyn-Uud Economic Cooperation Zone (ECZ); (b) ecological restoration for the Erenhot–Zamyn-Uud ECZ; (c) waste collection and transfer station in ECZ, and sanitation intelligent cloud platform in Erenhot; (ii) Mandula Port Subproject: It is located in Damaoqi County in Baotou and includes (a) expansion of port freight passage roads; (b) construction of service area; and customs supervision center in the International Highway Logistic Park; and (iii) Xiaoweiyang Subproject: It is located in Tuyouqi County, Damaoqi County and Guyang County in Baotou, and includes civil infrastructure activities: (a) upgrading stud sheep breeding base; (b) construction of quarantine station in Mandula Port; (c) upgrading five sheep farming bases; (d) construction of sheep slaughtering, processing and logistic park. Source: Asian Development Bank. II. SUMMARY OF CLIMATE CHANGE FINANCE UNDER TRANCHE 1 Project Financing Climate Financea Amount Adaptation Mitigation Source ($ million) ($ million) ($ million) Asian Development Bank Ordinary capital resources (regular loan) 31.58 22.35 9.23 Government 11.45 0.03 11.42 Private-owned Enterprise 0.51 0.51 Total 43.54 22.89 20.65 a Refer to the Guidance Note on Counting Climate Finance at ADB (October 2016). Source: Asian Development Bank estimates. 2 III. SUMMARY OF CLIMATE RISK SCREENING AND ASSESSMENT A. Sensitivity of Project Component(s) to Climate or Weather Conditions and the Sea Level The Investment Program is located in northern PRC–IMAR, which is the third largest provincial level region of PRC. Its climate is classified as arid or semi-arid. Precipitation is meagre, which is normally less than 200 millimeter (mm) per year. The annual average evapotranspiration is between 15 to 20 times more than annual precipitation. Besides limited water resources, the area is also featured with long cold winter, with frequent bitterly cold, strong, icy winds blowing out of Siberia. The main climate factors that may affect the design, construction and operation of the infrastructure subprojects include climate disasters (i.e., drought, snow, dust, and sandstorm), rainfall and their variabilities. Water shortage and enhanced overgrazing have put the fragile arid/semi-arid ecological environment under threats. Dust and sandstorm affect the transport system by blowing sand to the road or railway surface and results in stoppage. Project component: Sensitivity to climate/weather conditions and 1. Erenhot Subproject: sea level: (i) Inspection Area Construction for the PRC– 1. Temperature change (warming trend) affects Mongolia Erenhot–Zamyn-Uud ECZ; building heating/air-conditioning design; (ii) Ecological Restoration for the PRC–Mongolia 2. The risk of snowstorm hazard is likely increase Erenhot–Zamyn-Uud ECZ; as winter heavy precipitation may be 2. Mandula Port Subproject intensified; (i) Expansion of port freight passage roads; 3. The ecological green belt reduces the dust and (ii) Construction of service area in the sandstorm effects on Erenhot; International Highway Logistic Park; 4. Enhanced precipitation intensity indicates that (iii) Construction of customs supervision center in the storm drain system design needs to be the International Highway Logistic Park; examined; and 3. Xiaoweiyang Subproject 5. Climate change will likely enhance the pest (i) Upgrading stud sheep breeding base; hazard. (ii) Construction of quarantine station in Mandula Port; (iii) Upgrading five sheep farming bases; and (iv) Construction of sheep slaughtering, processing and logistic park. B. Climate Risk Screening The climate risk vulnerability assessment (CRVA) is focused on the climate sensitive activities of the Tranche 1 subprojects. The 2070 and 2100 climate projections are generated based on the pattern scaling method. The greenhouse gases (GHGs) concentration pathways published by Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report (AR5) are used in combination with climate sensitivity to construct the global warming trend. General Circulation Models (GCMs) outputs are used to generate the change scenarios of future climate. It is found that climate change will likely have considerable impacts on both temperature and precipitation in the area. In comparison to the long-term normal climate conditions, climate change impact on climate variation or extreme weather events such as heavy precipitation will likely be more significant so that the storm and heavy snow may become more intensive in the future. Design standards, in particular those for storm drain system may need to be altered, maintenance frequency increased, and extreme weather response planning capacity of operation units strengthened. Climate change could also reduce risks of certain climate hazards in the area, such as cold surge, which is likely becoming much mild due to the warming trend. It is also projected that precipitation will likely increase in the area and the dust and sandstorm may likely become less intense and less frequent. Climate Risk Classification: Medium C. Climate Risk and Adaptation Assessment The key findings of the CRVA are: 3 (i) A clear warming trend has already been observed for all four stations historically. The three stations on the north side of Yinshan Mountains have a similar warming rate of almost 5°C per 100 years (4.9°C/100a for Erenhot and Haliut; 4.8°C/100a for Bailing-Miao). That would imply a 2.4°C temperature increase by 2070, which is in good agreement with the GCM spatial projection. The area on the south has a smaller warming rate as represented by Hohhot’s 3.7°C/100a, which is also in agreement with the GCM projection. (ii) The mid scenario projection indicates the annual precipitation change will be noticeable, with an average increase between 6% and 10% by 2070; between 9% and 14% by 2100 over Erenhot and Baotou. At the site-specific scale, the precipitation is projected to increase for all month. The increase is quite clear for the summer months of July and August but with large model uncertainties. Such a scenario projection conveys good signs for this water stressed area but implies an increased storm and heavy snow hazards. (iii) Even in arid area, heavy rainfall still happens, particularly in summer. Heavy rainfall can cause damages to infrastructure such as wash-away road subgrade. The right-shifting of the 2070 generalized extreme value (GEV) distribution indicates an increment of the precipitation intensity. For example, the 50-year annual recurrence interval (ARI) event changes from current 154.80 mm to 172.00 mm with an uncertainty range between 165.52 mm to 193.97 mm. The climate change alters the climate regime, and the same ARI event will likely increase to 172.00 mm and 180.29 mm by 2070 and 2100 respectively under the mid scenario projection. (iv) Snow disaster is closely related to heavy snow or snowstorm in winter. According to Chinese Meteorology Administration (2018), snow event that has above 7.5 mm precipitation in 24 hours is classified as heavy snow or snowstorm. The right-shifting of the future scenario of GEV distribution indicates an increment of the snow intensity. The baseline 50-year ARI of winter maximum daily precipitation of Erenhot is 6.14 mm, and the same ARI event will likely change to be 6.78 mm and 7.08 mm by 2070 and 2100 respectively under the mid scenario projection. Clearly, snowstorm will still be very much rare event for Erenhot for most time in this century. It will only become a risk requires attention under high climate change scenario, which is 8.41 mm by 2100. Adaptation options: 1. “Hard” options: engineering measures in project design and construction For the arid and semi-arid area, water resource resilience is the priority for the infrastructure projects to sustain future climate change impact. A water recycling facility has been included in Mandula Port Subproject; while the Erenhot Subproject is intended to adopt a smart drip-irrigation system completely use reclaimed water for irrigation, which demonstrate excellent water resource uses as effective adaptation actions in the Tranche 1 development. Proper wastewater treatment facilities
Recommended publications
  • Continuing Crackdown in Inner Mongolia
    CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords.
    [Show full text]
  • 7 Resettlement Implementation Plan
    RP979 Bayannaoer City Comprehensive Water Environment Treatment Project Public Disclosure Authorized Resettlement Action Plan for appraisal Public Disclosure Authorized Public Disclosure Authorized Bayanor City Hetao Water Affair Co. Ltd. Public Disclosure Authorized June.2010 Contents OBJECTIVES OF THE RAP AND THE DEFINITION OF RESETTLEMENT TERMINOLOGY ......................................................................................................... 1 1 PROJECT OVERVIEW............................................................................................ 4 1.1 PROJECT BACKGROUND ....................................................................................... 4 1.2 PROJECT COMPONENTS AND PROJECT GENERAL SITUATION .................................. 5 1.2.1 Project Components .................................................................................... 5 1.2.2 Project General Situation .......................................................................... 5 1.3 PROJECT IMPACT AND SERVICE SCOPE .................................................................. 9 2 IMPACT ANALYSIS ON NATURE, SOCIETY AND ECONOMY OF PROJECT AFFECTED AREA .................................................................................................... 10 2.1 NATURAL CONDITIONS OF PROJECT-AFFECTED AREA ............................................ 10 2.2 SOCIAL AND ECONOMIC PROFILE ......................................................................... 12 2.3 PRESENT SITUATION OF SOCIAL ECONOMIC DEVELOPMENT IN PROJECT AFFECTED
    [Show full text]
  • Empirical and Model-Based Estimates of Spatial and Temporal Variations in Net Primary Productivity in Semi-Arid Grasslands of Northern China
    RESEARCH ARTICLE Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China Shengwei Zhang1,2, Rui Zhang1, Tingxi Liu1*, Xin Song3, Mark A. Adams4 1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China, 2 Centre for Carbon, Water and Food, University of Sydney, Sydney, Australia, 3 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 4 Swinburne University of a1111111111 Technology, Faculty of Science Engineering and Technology, Hawthorn, Victoria, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Spatiotemporal variations in net primary productivity (NPP) reflect the dynamics of water and carbon in the biosphere, and are often closely related to temperature and precipitation. OPEN ACCESS We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA) to Citation: Zhang S, Zhang R, Liu T, Song X, A. Adams M (2017) Empirical and model-based estimate NPP of semiarid grassland in northern China counties between 2001 and 2013. estimates of spatial and temporal variations in net Model estimates were strongly linearly correlated with observed values from different coun- primary productivity in semi-arid grasslands of ties (slope = 0.76 (p < 0.001), intercept = 34.7 (p < 0.01), R2 = 0.67, RMSE = 35 g CÁm-2Á Northern China. PLoS ONE 12(11): e0187678. year-1, bias = -0.11 g CÁm-2Áyear-1). We also quantified inter-annual changes in NPP over https://doi.org/10.1371/journal.pone.0187678 the 13-year study period. NPP varied between 141 and 313 g CÁm-2Áyear-1, with a mean of Editor: Ben Bond-Lamberty, Pacific Northwest 240 g CÁm-2Áyear-1.
    [Show full text]
  • Divergence of Above and Belowground C and N Pool Within Predominant Plant
    1 Divergence of above and belowground C and N pool within predominant plant 2 species along two precipitation gradients in North China 3 4 X. H. Ye1, Xu Pan1, 5, William K. Cornwell2, 4, S. Q. Gao1, Ming Dong1, 3* and J. H.C. 5 Cornelissen2 6 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, 7 Chinese Academy of Sciences, Beijing 100093, China 8 2 Systems Ecology, Department of Ecological Science, VU University, Amsterdam, De 9 Boelelaan 1085, 1081 HV Amsterdam, The Netherlands 10 3 Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, 11 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 12 310036, China 13 4 School of Biological, Earth and Environmental Sciences, University of New South 14 Wales, Sydney, Australia 15 5 University of Chinese Academy of Sciences, Beijing 100049, China 16 17 Author contributions: MD directed, coordinated and funded this study with 18 intellectual input from JHCC, WKC and XY; XY, XP, SG and MD carried out the fieldwork 19 and lab analyses; XY, WKC and JHCC did the data analysis and wrote the first manuscript 20 draft. All authors commented on the manuscript and consent with the submitted 21 version. 22 *corresponding author; e-mail: [email protected] 23 Running title: Divergence of above- and belowground C and N pool along 24 precipitation gradients 25 1 26 ABSTRACT 27 The coupling of carbon cycle and nitrogen cycle drives food web structure and 28 biogeochemistry of an ecosystem. However, across precipitation gradients, there may be 29 a shift in C pool and N pool from above- to below-ground because of shifting plant 30 stoichiometry and allocation.
    [Show full text]
  • Introduction on Dry Ports in Mongolia
    Introduction on Dry Ports in Mongolia 2017.11.14 Dry Ports Significance for Introduction Land‐Locked Countries Mongolia is an ideal environment for the development of Dry Ports. With fast growing local industries and volumes of cargo exchanged with our world, with no access to a sea but with a relatively good connection to neighboring ports of Russia and China calls for an erection and development of respective hubs, even with reflection of the vast territory of the country and a minor‐but‐growing intensity of settlement. Dry Ports Significance for Dry Ports Significance for Land‐Locked Land‐Locked Countries Countries as Mongolia • Mongolia ratified the Intergovernmental Agreement on Dry Ports on 23 April 2016. • The Agreement identifies a number of existing and potential dry port locations that are to be the basis of a coordinated effort to creates modes along an international integrated intermodal transport and logistics system. Dry Ports Significance for Dry Ports in Mongolia Land‐Locked Countries o Altanbulag (border with Russian Federation) o Ulaanbaatar o Sainshand o Zamyn-Uud (border with People`s republic of China) o Choibalsan (potential dry port) Dry Ports Significance for Dry Ports in Mongolia Land‐Locked Countries Dry Ports Significance for Dry Ports in Mongolia – Access to the Sea Land‐Locked Countries Dry Ports Significance for Dry Ports in PRC&RF - Significance for Mongolia Land‐Locked Countries CHINA • Erenhot South International Logistics Center, Erenhot • Manzhouli New International Freight Yard, Manzhouli • (altogether 17 ports, the above 2 have a direct connection with Mongolia). Dry Ports Significance for Dry Ports Significance for Land‐Locked Land‐Locked Countries Countries Nominated as Dry Ports /inland ports/ in Mongolia ALTANBULAG and ZAMYN-UUD are respectfully key parts of a wider Altanbulag and Zamyn-Uud Special Economic Zones.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Phylogeny of the Stipa and Implications for Grassland Evolution in China: Based on Biogeographic Evidence
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-140 Manuscript under review for journal Biogeosciences Discussion started: 26 April 2018 c Author(s) 2018. CC BY 4.0 License. Phylogeny of the Stipa and implications for grassland evolution in China: based on biogeographic evidence 1 Qing Zhang1*, Junjun Chen1, Yong Ding2 2 1 School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, 3 China 4 2 Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot, 5 010010, China; 6 * Corresponding author. Email: [email protected] 7 8 Abstract 9 The evolution of Chinese grassland is a still an important question biogeography. In this study, the 10 phylogeny of 20 Stipa species (extensively distributed in Chinese grassland) was established to 11 explore the origin and dispersal routes of Chinese grassland. It showed that Stipa species 12 originated at 28 MaBP and they started to differentiate in central Inner Mongolia at 22 MaBP. 13 Then, Stipa species expanded along four routes: (1) they expanded from central Mongolia to the 14 Qilian Mountains, Qinghai, and western Tibet at 16 MaBP. They then gradually expanded from 15 western to eastern Tibet from 11-6 MaBP. (2) At 12 MaBP, they expanded from central Inner 16 Mongolia to the Helan Mountains. (3) At 8 MaBP, they expanded from central Inner Mongolia to 17 the Xinjiang area. (4) At 4 MaBP, they expanded from central to eastern Inner Mongolia. 18 Therefore, we could deduce the formation order of Chinese grasslands: central Inner Mongolia > 19 Qilian Mountains > Qinghai > western Tibet > Helan Mountains > Xinjiang > central Tibet > 20 eastern Tibet > eastern Inner Mongolia.
    [Show full text]
  • Inner Mongolia Sustainable Cross-Border Development Investment Program
    Report and Recommendation of the President to the Board of Directors Project Number: 51192-001 September 2020 Proposed Multitranche Financing Facility People’s Republic of China: Inner Mongolia Sustainable Cross-Border Development Investment Program Distribution of this document is restricted until it has been approved by the Board of Directors. Following such approval, ADB will disclose the document to the public in accordance with ADB’s Access to Information Policy. CURRENCY EQUIVALENTS (as of 25 August 2020) Currency unit – yuan (CNY) CNY1.00 = $6.9196 $1.00 = €0.8483 €1.00 = $1.1788 ABBREVIATIONS ADB – Asian Development Bank ALE – agricultural leading enterprise BCP – border crossing point CAREC – Central Asia Regional Economic Cooperation COVID-19 – coronavirus disease ECZ – economic cooperation zone EIRR – economic internal rate of return ESMS – environmental and social management system FAM – facility administration manual FIL – financial intermediation loan FIRR – financial internal rate of return GDP – gross domestic product IMAR – Inner Mongolia Autonomous Region IMARG – Government of Inner Mongolia Autonomous Region km – kilometer MFF – multitranche financing facility PAP – poverty alleviation program PIE – project implementing entity PRC – People’s Republic of China SME – small and medium-sized enterprises SOE – state-owned enterprise NOTE In this report, “$” refers to United States dollars. Vice-President Ahmed M. Saeed, Operations 2 Director General James Lynch, East Asia Department (EARD) Director Xiaoqin Fan, Public Management, Financial Sector, and Regional Cooperation Division (EAPF), EARD Team leader Seung Min Lee, Senior Financial Sector Specialist, EAPF, EARD Deputy Team Aoxue Ren, Senior Procurement Officer, People’s Republic of China Leader Resident Mission, EARD Team members Bo An, Public Management Specialist, EAPF, EARD Frederic Asseline, Principal Climate Change Specialist (Climate Finance), Sustainable Development and Climate Change Department (SDCC) Ma.
    [Show full text]
  • Inner Mongolia Autonomous Region of the People’S Republic of China Trade Facilitation and Logistics Development Strategy
    The views expressed in this presentation are the views of the author and do not necessarily reflect the views or policies of the Asian Development Bank (ADB), or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. Workshop on Trade Logistics Development Tashkent, Uzbekistan 2-4 September 2008 Executive Summary Special Case Study- Inner Mongolia Autonomous Region of the People’s Republic of China Trade Facilitation and Logistics Development Strategy Prepared by Robert L. Wallack, International Consultant, United States of America For Asian Development Bank August 4, 2008 There are many common issues between Inner Mongolia’s trade facilitation and logistics development strategy and the Action Plan of the Transport and Trade Facilitation Strategy on developing six corridors in the Central Asia Regional Economic Cooperation as outlined earlier this year by the Asian Development Bank in Baku, Azerbaijan. Inner Mongolia is landlocked and borders landlocked Mongolia to the northern region as well as Russia by a 4,221 kilometers border line and eight Chinese provinces to the east, south and west. As in Central Asia, Inner Mongolia needs to increase economic interdependence across the borders and frontiers as well as within China. The analysis of Inner Mongolia’s logistics industry reveals a strategic agenda for implementation in order to fully develop the mining, agriculture and animal product sectors of the economy. The integration of the logistics industry with the abundant human and natural resources of not only Inner Mongolia, but also Mongolia benefits long term bilateral and international economic growth for both countries.
    [Show full text]
  • Probing the Spatial Cluster of Meriones Unguiculatus Using the Nest Flea Index Based on GIS Technology
    Accepted Manuscript Title: Probing the spatial cluster of Meriones unguiculatus using the nest flea index based on GIS Technology Author: Dafang Zhuang Haiwen Du Yong Wang Xiaosan Jiang Xianming Shi Dong Yan PII: S0001-706X(16)30182-6 DOI: http://dx.doi.org/doi:10.1016/j.actatropica.2016.08.007 Reference: ACTROP 4009 To appear in: Acta Tropica Received date: 14-4-2016 Revised date: 3-8-2016 Accepted date: 6-8-2016 Please cite this article as: Zhuang, Dafang, Du, Haiwen, Wang, Yong, Jiang, Xiaosan, Shi, Xianming, Yan, Dong, Probing the spatial cluster of Meriones unguiculatus using the nest flea index based on GIS Technology.Acta Tropica http://dx.doi.org/10.1016/j.actatropica.2016.08.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Probing the spatial cluster of Meriones unguiculatus using the nest flea index based on GIS Technology Dafang Zhuang1, Haiwen Du2, Yong Wang1*, Xiaosan Jiang2, Xianming Shi3, Dong Yan3 1 State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China. 2 College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China.
    [Show full text]
  • Bryoerythrophyllum Latinervium Var. Rotundatum Xlbai, Dmren & Lqyang
    Cryptogamie, Bryologie, 2018, 39 (4): 459-465 © 2018 Adac. Tous droits réservés Bryoerythrophyllum latinervium var. rotundatum X.L.Bai, D.M.Ren &L.Q.Yang (Pottiaceae), anew moss variety from northern China Li-Qun YANGa,Dong-Mei RENa*,Xue-Liang BAIa &Dong-Ping ZHAOa aKey Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China Abstract – The moss Bryoerythrophyllum latinervium var. rotundatum X.L.Bai, D.M.Ren et L.Q.Yang is described as anew variety from Inner Mongolia, China. It is distinguished from Bryoerythrophyllum latinervium (Holmen) Fedosov et Ignatova by its rounded leaf apex. Light microscope photographs of the significant characters are provided and its distinctions from closely related taxa are discussed. Akey to the Chinese species of Bryoerythrophyllum is provided. Bryoerythrophyllum /Bryophytes /East Asia /Inner Mongolia /Taxonomy INTRODUCTION The genus Bryoerythrophyllum (Pottiaceae) currently consists of 34 species (Jiménez, 2007; Zander,2007; Jiménez &Cano, 2012; Feng et al.,2014; Sollman, 2015; Feng et al.,2016; Kou et al.,2016; Blockeel et al.,2017). The genus is characterized by the red colour of the plants, bifidand crowded papillae of the upper laminal cells, and well differentiated basal cells (Zander,1993). Jia and He (2013) summarized all records in achecklist of Chinese bryophytes, and listed nine species and one variety of Bryoerythrophyllum for China. Nine species and two varieties were recognized by Ren (2012). Recently, Bryoerythrophyllum neimonggolicum X.L.Bai &C.Feng (Feng et al.,2014), B. latinervium (Holmen) Fedosov &Ignatova (Song et al.,2015), B. pseudomarginatum J.Kou, X.M.Shao &C.Feng (Kou et al., 2016), and B.
    [Show full text]
  • Summary Report of NEASPEC Capacity Building Programme-Training on Combating Desertification for Mongolian Experts 19-26, Septemb
    Summary Report of NEASPEC Capacity Building Programme-Training on Combating Desertification for Mongolian Experts 19-26, September 2011 Organizer: United Nations Economic and Social Commission for Asia and the Pacific National Bureau to Combat Desertification, State Forestry Administration, China Co-Organizer: Institute of Desertification, Chinese Academy of Forestry Forestry Department of Inner Mongolia Autonomous Region People’s Government of Erenhot Municipality September, 2011 Summary Report of NEASPEC Capacity Building Programme-Training on Combating Desertification for Mongolian Experts Table of contents Abbreviations and acronyms .......................................................................... i 1. Brief Introduction of the Training ....................................................................... 1 2. Brief Introduction of the Lectures ...................................................................... 2 2.1 Policies, laws, regulations and general strategies ......................................... 2 2.2 Combating desertification of railway and road .............................................. 2 2.3 Control and restoration of degraded grassland ............................................. 3 2.4 The utilization of wastewater and the technologies of combating desertification and afforestation .......................................................................... 4 2.5 Ecological tourism and planning ................................................................... 4 3. The cooperation fields and direction
    [Show full text]