General Catalogue of Stars for 1860, Fan. 1

Total Page:16

File Type:pdf, Size:1020Kb

General Catalogue of Stars for 1860, Fan. 1 T H E C A P E C A T A L O G U E 1 1 ST ARS 5 9 , D ED UC ED FROM OBSERVATIONS AT T HE R YAL BSERV AT RY C APE O F G O D H PE O O O , O O , 1 8 6 T o 1 8 1 5 6 , RED UC ED TO THE EPOC H UN DER T HE SUPE RIN T EN DRN C R O ? E. S T O N E M . A J , ., ' (L AT E rnww o r mum s couzcz, ca umuncz), ’ HER MAJEST Y S AST RO NO MER AT T HE CAPE. PUBL B HED Br ORD ER OF THE BOARD O F EV OBEDIENC E TO HER M EWS C OMMJND . C APE T OWN O N C O . 8: 0 ST G E O G E S - ST R E E . SA U L SO L O M , 4 9 5 , . R T 1 873 . IN T R O D UC T I O N T O T HE A AL O G U E O F 1 1 5 ST A RS C A PE C T 9 , FO R T HE EPO C H 1 860. O r o f H was a n The Royal bservato y, Cape Good ope, established by in 1 820 O 20. O rder Council, dated , ctober The leading idea was to fi O r H fo r establish a rst class bservato y in the Southern emisphere, work o f a similar character to that o f the Greenwich O bservatory in the Northern Hemisphere. The observations were to be made with ins tru o f a ments the same class, and the results were to be drawn up in the s me f orm , in order that the whole might constitute two corresponding series capable o f comparison in all their parts. No opportunity o f making observations capable o f improving the Theory o f Refraction was to hé neglected . O B s The bservatory uilding were completed the instruments, similar to those at that time in use at Greenwich, mounted ; and observations commenced in 1 829 . But the hand o f death was almost upon the first A . R f 1 8 0 Director. The ssistant, Capt onald, broke down , and le t in 3 ; a nd f Fallows, a ter struggling on , somewhat hopelessly, as best he could o f f 1 8 1 o f with the aid his wi e, died in July, 3 , at the early age 43 , with the expectations which had drawn him to South Africa unfulfilled . Much could not have been done under the circumstances in which Fallows was as . A o f Of placed, and not much w done Catalogue approximate places o f z o f the principal stars, south the enith the Cape, made with small o T rans ac instruments, in Cape Town, was published in the Philos phical o fo r 1 82 f f ti ns 4, and another Catalogue, ormed rom observations made at O 1 82 - 1 8 1 o f R this bservatory 9 3 , appears in the Memoirs the oyal A V o l . XIX 1 8 1 . stronomical Society, , published in 5 It contains the Right Ascensions o f Stars : but o f these only 88 have corresponding observations in North Polar Distance ; a considerable portion o f these places are those o f well- known Stars observed fo r clock error. H Fallows was succeeded by Mr. Thos . enderson , who remained at the Cape a little more than a year ; but that year must ever be a H r memorable one in the annals o f the Cape O bservatory. ende son o f a discovered the sensible parallax Centauri , and determined its amount with an accuracy which has left to his successors little more tha n a it Introduction to the Cape Catalogue v fic n o f his re . He r 1 8 eri atio sult educed and published, in 3 5 , the o f 1 2 o f R declinations 7 Stars, and in in the Memoirs the oyal A R A o f 1 o f a s stronomical Society, the ight scensions 74 the princip l Star , the results o f the observations made by him a nd his assistant at the C ape in 1 83 1 and 1 83 2 . It is impossible to over-estimate the value o f these papers a s affording accurate places o f a lim ited number o f Stars at the epoch but the extent o f the Catalogue is small . Henderson removed all ‘ c s o f his o bsérva tio ns f m O t the re ord ro the bservatory, wi h a view to their s r ubsequent reduction, It is desi able that the original records should be returned fo r preservation at this O bservatory . Mr. Hendersonwa s s b . no w mas o n ucceeded y Mr ( Sir Tho ) Maclear, who arrived at the Cape th o f n 1 8 . m a . a the s Ja uary, 3 4 The observations de by Mr Macle r and his Ass ista nt in the y ear 1 83 4. were published and distributed fo r the use o f A s a o f o bser tronomers, and some dvance was made in the printing the va tio ns 1 8 1 8 6 1 8 r o f r made in 3 5 , 3 , 3 7 but the eductions these yea s were n was . never completed, and the printi g stopped It would appear that attention was cal led o ff from attempts to form a Star Catalogue to the measurem ent o f an arc o f meridian . The field work o f this arc was finished in but it was not until 1 866 that the volumes containing and the results were completely printed published, and Sir Thos . Maclear placed ina position to receive the congratulations o f his contemporaries on the completion o f his work. O f the value o f this work there cannot be two opinions : but it was allowed to disorganiz e the other work o f the O s the b ervatory to such an extent that, when I assumed Directorship ' 1 8 0 f f v s ta fi in 7 , I ound mysel , with a ery limited , unexpectedly confronted with the results o f 3 6 years o f miscellaneous obs erving es o f n in all stag reduction, nothing completed , and nothi g which could be brought forwa rd fo r publication and use without a very considerable expenditure o f time and skilled labour. I fear the cours e pursued o f continuous miscellaneous observing without reduction, has not tended to the advancement o f accurate Astronomy to any extent proportional to the the labour expended upon work, and still required to be expended uponit before the results can be rendered useful . Such observing is rarely conducted in a way to facilitate the s ubsequent reductions or to economiz e l labour in observing. This will be apparent to any one who wi l count ° ° the number o f observations o f Stars between 67 and 1 1 7 North Polar Distance and consider that a Catalogue formed from the results o f other years woul d contain observations o f these Stars to very nearly the same f m relative extent . O f the large number o observations accu ulated f 1 . 1 8 u he re rom 83 4 to 5 5 , with the Transit instr ment and Mural Circles, o f o f the the places o f the Southern Stars, out the reach Northern O e l o f fo r but bservatories, will when reduc d, stil be value proper motions t he immense number o f observatio ns o f well- known Stars made here with of 1 1 5 9 Stars for the epoch 1 860 . iii o l ca no w f r r for the d instruments n , I ear, never epay the labour equired their reduction . The Right Ascensions o f those Stars which have been used fo r clock error ca n do little more than reproduce the assum ed ta bular places em R A n o f r ployed in the reductions, and the ight scensio s other Sta s not further from the Equator than thos e o f the usual clock-star list can never differ much from the results o f the Northern O bservatories . The North Polar Distances o f the same well-observed Stars can now be o f little value. The results are not likely to be compared with those o f the Northern O bservatories fo r a discussion o f the errors o f the refraction tables when results made with more powerful instrumen ts are available. ’ e s stafi I have mad the e remarks , not only in justice to the present , u v and to explain the work pon which they ha e been employed, but because it was these considerations which led me to pass over the earlier observations , and to commence the systematic reductions with the year 1 8 6 was fi use. f 5 , when the Transit Circle rst brought into regular I elt that these reductions coul d not be any longer delayed without the value o f s .
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • Interstellar Reddening Towards Six Small Areas in Puppis-Vela⋆⋆⋆
    A&A 543, A39 (2012) Astronomy DOI: 10.1051/0004-6361/201219007 & c ESO 2012 Astrophysics Interstellar reddening towards six small areas in Puppis-Vela, G. A. P. Franco Departamento de Física – ICEx – UFMG, Caixa Postal 702, 30.123-970 – Belo Horizonte – MG, Brazil e-mail: [email protected] Received 9 February 2012 / Accepted 1 May 2012 ABSTRACT Context. The line-of-sight towards Puppis-Vela contains some of the most interesting and elusive objects in the solar neighbourhood, including the Gum nebula, the IRAS Vela shell, the Vela SNR, and dozens of cometary globules. Aims. We investigate the distribution of the interstellar dust towards six small volumes of the sky in the region of the Gum nebula. Methods. New high-quality four-colour uvby and Hβ Strömgren photometry obtained for 352 stars in six selected areas of Kapteyn and complemented with data obtained in a previous investigation for two of these areas, were used to estimate the colour excess and distance to these objects. The obtained colour excess versus distance diagrams, complemented with other information, when available, were analysed in order to infer the properties of the interstellar medium permeating the observed volumes. Results. On the basis of the overall standard deviation in the photometric measurements, we estimate that colour excesses and distances are determined with an accuracy of 0m. 010 and better than 30%, respectively, for a sample of 520 stars. A comparison with 37 stars in common with the new Hipparcos catalogue attests to the high quality of the photometric distance determination. The obtained colour excess versus distance diagrams testify to the low density volume towards the observed lines-of-sight.
    [Show full text]
  • Presidents Report
    April 2008 Volume 13, Issue 4 Volume 13 Issue 4 Inside this Issue Presidents Report John Rombi Observing Dates 2 Good Evening to all members and guests; and For Sale 2 welcome to our April meeting and A.G.M. Tonight we Roll Up, Roll Up 3 will be saying farewell to our old committee and inducting our new committee to take M.A.S into the Star Hopping to Messiers 4 New Year. Out with the Old 8 Further details on the past happenings are available in my yearly report. I would like to thank last months speaker Dr Miroslav MAS Committee Filipovic from U.W.S for a very thought provoking and sometimes controversial talk on “The Universes President beginning, makeup and ultimate size” He certainly John Rombi had the joint hopping!! Secretary Bob Bee Our Stargard and Forest nights have been mixed Treasurer regarding the weather. When the sky was clear, the Dick Everett dew was oppressive. Well we are heading to the colder & drier time of the year; can’t wait!! Committee Members Lloyd Wright Kate Johnston Daniel Ross Tonight Kate & Daniel Ross will take us on a “Tour of MAS Postal Address Astronomy, U.K Style” P.O. Box 17 MINTO NSW 2566 Next Month Don’t forget; tell your friends, work colleagues even Ph: (02) 4647 4335 Web: www.macastro.org.au your enemies that Prof Bryan Gaensler will be our speaker for May. Prime Focus Editor Kate John ston cyberpiggy @optusnet.com.au Open night- Rotary Observatory. There will be an Open Night for the public held on Saturday June 14th at The Domes.
    [Show full text]
  • UNSC Science and Technology Command
    UNSC Science and Technology Command Earth Survey Catalogue: Official Name/(Common) Star System Distance Coordinates Remarks/Status 18 Scorpii {TCP:p351} 18 Scorpii {Fact} 45.7 LY 16h 15m 37s Diameter: 1,654,100km (1.02R*) {Fact} -08° 22' 06" {Fact} Spectral Class: G2 Va {Fact} Surface Temp.: 5,800K {Fact} 18 Scorpii ?? (Falaknuma) 18 Scorpii {Fact} 45.7 LY 16h 15m 37s UNSC HQ base on world. UNSC {TCP:p351} {Fact} -08° 22' 06" recruitment center in the city of Halkia. {TCP:p355} Constellation: Scorpio 111 Tauri 111 Tauri {Fact} 47.8 LY 05h:24m:25.46s Diameter: 1,654,100km (1.19R*) {Fact} +17° 23' 00.72" {Fact} Spectral Class: F8 V {Fact} Surface Temp.: 6,200K {Fact} Constellation: Taurus 111 Tauri ?? (Victoria) 111 Tauri {Fact} 47.8 LY 05:24:25.4634 UNSC colony. {GoO:p31} {Fact} +17° 23' 00.72" Constellation: Taurus Location of a rebel cell at Camp New Hope in 2531. {GoO:p31} 51 Pegasi {Fact} 51 Pegasi {Fact} 50.1 LY 22h:57m:28s Diameter: 1,668,000km (1.2R*) {Fact} +20° 46' 7.8" {Fact} Spectral Class: G4 (yellow- orange) {Fact} Surface Temp.: Constellation: Pegasus 51 Pegasi-B (Bellerophon) 51 Pegasi 50.1 LY 22h:57m:28s Gas giant planet in the 51 Pegasi {Fact} +20° 46' 7.8" system informally named Bellerophon. Diameter: 196,000km. {Fact} Located on the edge of UNSC territory. {GoO:p15} Its moon, Pegasi Delta, contained a Covenant deuterium/tritium refinery destroyed by covert UNSC forces in 2545. {GoO:p13} Constellation: Pegasus 51 Pegasi-B-1 (Pegasi 51 Pegasi 50.1 LY 22h:57m:28s Moon of the gas giant planet 51 Delta) {GoO:p13} +20° 46' 7.8" Pegasi-B in the 51 Pegasi star Constellation: Pegasus system; a Covenant stronghold on the edge of UNSC territory.
    [Show full text]
  • The Handbook of the British Astronomical Association
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2012 Saturn’s great white spot of 2011 2011 October ISSN 0068-130-X CONTENTS CALENDAR 2012 . 2 PREFACE. 3 HIGHLIGHTS FOR 2012. 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS. 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S. 7-8 ECLIPSES . 9-15 TIME. 16-17 EARTH AND SUN. 18-20 MOON . 21 SUN’S SELENOGRAPHIC COLONGITUDE. 22 MOONRISE AND MOONSET . 23-27 LUNAR OCCULTATIONS . 28-34 GRAZING LUNAR OCCULTATIONS. 35-36 PLANETS – EXPLANATION OF TABLES. 37 APPEARANCE OF PLANETS. 38 MERCURY. 39-40 VENUS. 41 MARS. 42-43 ASTEROIDS AND DWARF PLANETS. 44-60 JUPITER . 61-64 SATELLITES OF JUPITER . 65-79 SATURN. 80-83 SATELLITES OF SATURN . 84-87 URANUS. 88 NEPTUNE. 89 COMETS. 90-96 METEOR DIARY . 97-99 VARIABLE STARS . 100-105 Algol; λ Tauri; RZ Cassiopeiae; Mira Stars; eta Geminorum EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 INTERNET RESOURCES. 110-111 GREEK ALPHABET. 111 ERRATA . 112 Front Cover: Saturn’s great white spot of 2011: Image taken on 2011 March 21 00:10 UT by Damian Peach using a 356mm reflector and PGR Flea3 camera from Selsey, UK. Processed with Registax and Photoshop. British Astronomical Association HANDBOOK FOR 2012 NINETY-FIRST YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 2 CALENDAR 2012 January February March April May June July August September October November December Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day of of of of of of of of of of of of of of of of of of of of of of of of of Month Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year 1 Sun.
    [Show full text]
  • Elisa: Astrophysics and Cosmology in the Millihertz Regime Contents
    Doing science with eLISA: Astrophysics and cosmology in the millihertz regime Pau Amaro-Seoane1; 13, Sofiane Aoudia1, Stanislav Babak1, Pierre Binétruy2, Emanuele Berti3; 4, Alejandro Bohé5, Chiara Caprini6, Monica Colpi7, Neil J. Cornish8, Karsten Danzmann1, Jean-François Dufaux2, Jonathan Gair9, Oliver Jennrich10, Philippe Jetzer11, Antoine Klein11; 8, Ryan N. Lang12, Alberto Lobo13, Tyson Littenberg14; 15, Sean T. McWilliams16, Gijs Nelemans17; 18; 19, Antoine Petiteau2; 1, Edward K. Porter2, Bernard F. Schutz1, Alberto Sesana1, Robin Stebbins20, Tim Sumner21, Michele Vallisneri22, Stefano Vitale23, Marta Volonteri24; 25, and Henry Ward26 1Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), Germany 2APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, France 3Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA 4Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena CA 91125, USA 5UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 6Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex, France 7University of Milano Bicocca, Milano, I-20100, Italy 8Department of Physics, Montana State University, Bozeman, MT 59717, USA 9Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 10ESA, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 11Institute of Theoretical Physics University of Zürich, Winterthurerstr. 190, 8057 Zürich Switzerland
    [Show full text]
  • A Mass-Loss Rate Determination for Zeta Puppis from the Quantitative Analysis of X-Ray Emission-Line Profiles
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 7-11-2010 A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles David H. Cohen Swarthmore College, [email protected] M. A. Leutenegger Emma Edwina Wollman , '09 J. Zsargó D. J. Hillier See next page for additional authors Follow this and additional works at: https://works.swarthmore.edu/fac-physics Part of the Astrophysics and Astronomy Commons Let us know how access to these works benefits ouy Recommended Citation David H. Cohen; M. A. Leutenegger; Emma Edwina Wollman , '09; J. Zsargó; D. J. Hillier; R. H.D. Townsend; and S. P. Owocki. (2010). "A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles". Monthly Notices Of The Royal Astronomical Society. Volume 405, Issue 4. 2391-2405. DOI: 10.1111/j.1365-2966.2010.16606.x https://works.swarthmore.edu/fac-physics/23 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Authors David H. Cohen; M. A. Leutenegger; Emma Edwina Wollman , '09; J. Zsargó; D. J. Hillier; R. H.D. Townsend; and S. P. Owocki This article is available at Works: https://works.swarthmore.edu/fac-physics/23 Mon. Not. R. Astron. Soc. 405, 2391–2405 (2010) doi:10.1111/j.1365-2966.2010.16606.x A mass-loss rate determination for ζ Puppis from the quantitative analysis of X-ray emission-line profiles David H.
    [Show full text]
  • Research Papers-Astronomy/Download/8552
    Anomalous occultations: A Review of the Apparent Projection of Stars on the Moon's Disk A. A. Faraj [email protected] Abstract: In the present investigation, the reported apparent projection of occulted stars, on the Moon's disk, is, briefly, reviewed. In addition, G. B. Airy's hypothesis of refrangibility, as well as the travel time of moonlight, from the Moon to Earth, along with the aberration of moonlight and starlight, are, thoroughly, analyzed, on the basis of the assumption of constant speed of light, as defined within the framework of the classical wave theory, and on the basis of the ballistic assumption, as defined within the framework of the elastic-impact ballistic theory, respectively. Keywords: Lunar occultation; secular light aberration; annual light aberration; ballistic speed of light; Airy's hypothesis; uniform linear motion; optical image; motion relative to the CMBR; light travel time. Introduction: Undoubtedly, among the most bothersome questions, on the back of almost every astronomer's mind, during most of the 18th century, and throughout the 19th century, as well, must have been this one: If the co-moving Moon, by definition, does not show any clear sign of planetary aberration, due to Earth's orbital velocity, around the Sun [Ref. #12], then why can't stars, occulted, regularly, by the Moon, at the night side, be projected, on the Moon's disk, immediately, after the reappearance, on the trailing limb of the Moon, by, at least, a few seconds of arc, and a maximum of no more than 20.5 seconds of arc, at the end of each and every lunar occultation? Such an obvious and quite disturbing ― though largely implicit and unspoken ― discrepancy was, in all likelihood, the primary motivation, behind a tremendous number of observational reports, in the published literature, during those two centuries, regarding the apparent projection of stars on the Moon's disk, at the start, as well as at the end of so many lunar occultations [Ref.
    [Show full text]
  • L'observation Des Étoiles Doubles Visuelles
    PAUL COUTEAU L'OBSERVATION DES ÉTOILES DOUBLES VISUELLES TABLE DES MATIÈRES PRÉFACE AVANT-PROPOS CHAPITRE PREMIER. — Historique - Les étoiles doubles dans l'Univers - Les précurseurs : Herschel père et fils - Les premiers modernes : Struve père et fils - L'ère des grands pionniers - Les prospections modernes - Recherches dans l'hémisphère Sud - Les étoiles doubles découvertes par la photographie - Les étoiles doubles à grand mouvement propre commun - Quelques grands observateurs d'étoiles doubles - La centralisation des mesures - Physionomie de l'ensemble des couples connus CHAPITRE II. — Notions d'optique à l'usage des observateurs d'étoiles doubles - L'instrument le plus utilisé. La lunette - Grossissements. Cercle oculaire - Image donnée par un objectif circulaire. Pouvoir séparateur. Grossissement résolvant. Grossissement utile - Structure de l'image d'une étoile double serrée - Clarté CHAPITRE III. — Les appareils de mesures - Mesures visuelles Principe de la mesure d'une étoile double Précautions à prendre pour repérer l'origine des angles Les micromètres à fils Les micromètres à étoiles de comparaison Les micromètres interférentiels. Le micromètre de Fizeau-Michelson Le micromètre interférentiel à demi-onde Le micromètre à double image de Paul Muller Le micromètre à double image de B. Lyot et H. Camichel - L'observation photographique des étoiles doubles Chambre optique à photons Chambre optique à électrons - L'interférométrie moderne Interféromètre automatique de W. C. Wickes Interféromètre à comptage de photons de A. Labeyrie Interféromètre à intensité de R. H. Brown - Observation des étoiles doubles par occultations - Observation des étoiles doubles par balayage photoélectrique de l'image CHAPITRE IV. — Quelques conseils pratiques - Préparation de la nuit d'observation - Précautions à prendre vis-à-vis de la lunette - La turbulence atmosphérique - Pratique de l'observation visuelle des étoiles doubles - Observation d'objets célestes artificiels CHAPITRE V.
    [Show full text]
  • The Effect of the Metallicity on the Cepheid Period-Luminosity Relation
    Gauging the Universe: the Effect of the Metallicity on the Cepheid Period-Luminosity Relation Dissertation der Fakult¨atf¨urPhysik der Ludwig-Maximilians-Universit¨atM¨unchen vorgelegt von Marta Mottini aus Magenta, Italien M¨unchen, den 19-06-2006 Datum der mündlichen Prüfung: 19. Juni 2006 1. Gutachter: Priv. Doz. Dr. Achim Weiss 2. Gutachter: Prof. Dr. Adalbert W.A. Pauldrach Summary The aim of this thesis is to assess the effect of the metallicity on the Cepheid Period-Luminosity (PL) relation. The novelty of the approach adopted in this project consists in the homogeneous analysis of a large sample of Cepheids (72) observed in three galaxies (the Milky Way, the Large Magellanic Cloud and the Small Magellanic Cloud), spanning a factor of ten in metallicity. This allows us to explore the effect of the metallicity on the PL relation in a wide range and to study the gas enrichment histories of three different galaxies. To fulfil this goal, firstly, we have selected a sample of Cepheids for which distances and accurate photometry are available in the literature and we have collected high-resolution, high signal-to-noise spectra of these stars, using the highly advanced facilities of the European Southern Observatory in Chile. Secondly, we have directly measured iron and α-elements (O, Na, Mg, Al, Si, Ca, Ti) abundances of our sample from these spectra. We have compared our iron abundances with studies on Galactic and Magellanic Cepheids and found a good agreement for the average values and for the individual stars in common. We have then made a broader comparison with results for the Magellanic Clouds from the analysis of F and K non-variable supergiants (they have ages and temperatures similar to Cepheid stars) and of B stars, which are progenitors of Cepheids, and found a good agreement.
    [Show full text]
  • Uranometría Argentina Bicentenario
    URANOMETRÍA ARGENTINA BICENTENARIO Reedición electrónica ampliada, ilustrada y actualizada de la URANOMETRÍA ARGENTINA Brillantez y posición de las estrellas fijas, hasta la séptima magnitud, comprendidas dentro de cien grados del polo austral. Resultados del Observatorio Nacional Argentino, Volumen I. Publicados por el observatorio 1879. Con Atlas (1877) 1 Observatorio Nacional Argentino Dirección: Benjamin Apthorp Gould Observadores: John M. Thome - William M. Davis - Miles Rock - Clarence L. Hathaway Walter G. Davis - Frank Hagar Bigelow Mapas del Atlas dibujados por: Albert K. Mansfield Tomado de Paolantonio S. y Minniti E. (2001) Uranometría Argentina 2001, Historia del Observatorio Nacional Argentino. SECyT-OA Universidad Nacional de Córdoba, Córdoba. Santiago Paolantonio 2010 La importancia de la Uranometría1 Argentina descansa en las sólidas bases científicas sobre la cual fue realizada. Esta obra, cuidada en los más pequeños detalles, se debe sin dudas a la genialidad del entonces director del Observatorio Nacional Argentino, Dr. Benjamin A. Gould. Pero nada de esto se habría hecho realidad sin la gran habilidad, el esfuerzo y la dedicación brindada por los cuatro primeros ayudantes del Observatorio, John M. Thome, William M. Davis, Miles Rock y Clarence L. Hathaway, así como de Walter G. Davis y Frank Hagar Bigelow que se integraron más tarde a la institución. Entre éstos, J. M. Thome, merece un lugar destacado por la esmerada revisión, control de las posiciones y determinaciones de brillos, tal como el mismo Director lo reconoce en el prólogo de la publicación. Por otro lado, Albert K. Mansfield tuvo un papel clave en la difícil confección de los mapas del Atlas. La Uranometría Argentina sobresale entre los trabajos realizados hasta ese momento, por múltiples razones: Por la profundidad en magnitud, ya que llega por vez primera en este tipo de empresa a la séptima.
    [Show full text]