General Soil Map of Ireland, 1969 Survey of Some Midland Sub-Peat Mineral Soils (With Bord Na Móna), 1971 — M

Total Page:16

File Type:pdf, Size:1020Kb

General Soil Map of Ireland, 1969 Survey of Some Midland Sub-Peat Mineral Soils (With Bord Na Móna), 1971 — M SOIL SURVEY PUBLICATIONS 1962-1979 County Surveys Soils of Co. Wexford, 1964* — M. J. Gardiner and P. Ryan Soils of Co. Limerick, 1966 — T. F. Finch and P. Ryan Soils of Co. Carlow, 1967 — M. J. Conry and P. Ryan Soils of Co. Kildare, 1970 — M. J. Conry, R. F. Hammond and T. O’Shea Soils of Co. Clare, 1971 — T. F. Finch, E. Culleton and S. Diamond Soils of Co. Westmeath, 1977 — T. F. Finch and M. J. Gardiner Soils of West Cork, (part of Resource Survey) 1963 — M. J. Conry, P. Ryan and J. Lee Soils of West Donegal, (part of Resource Survey) 1969 — M. Walsh, M. Ryan and S van de Schaaf Soils of Co. Leitrim, (part of Resource Survey) 1973 — M. Walsh An Foras Talúntais Farms Grange, Co. Meath, 1962 — M. J. Gardiner Kinsealy, Co. Dublin, 1963 — M. J. Gardiner Creagh, Co. Mayo, 1963 — M. J. Gardiner Herbertstown, Co. Limerick, 1964 — T. F. Finch Drumboylan, Co. Roscommon, 1968 — G. Jaritz and J. Lee Ballintubber, Co. Roscommon, 1969 — M. Ryan and J. Lee Ballinamore, Co. Leitrim, 1969 — T. F. Finch and J. Lee Clonroche, Co. Wexford, 1970 — T. F. Finch and M. J. Gardiner Mullinahone, Co. Tipperary, 1970 — M. J. Conry Ballygagin, Co. Waterford, 1972 — T. F. Finch and M. J. Gardiner Department of Agriculture Farms Clonakilty, Co. Cork, 1964* — J. Lee and M. J. Conry Ballyhaise, Co. Cavan, 1965* — M. Ryan and J. Lee Athenry, Co. Galway, 1965* — S. Diamond, M. Ryan and M. J. Gardiner Other Farms Kells Ingram, Co. Louth, 1964* — M. J. Gardiner Multyfarnham Agricultural College, Co. Westmeath, 1964* — J. Lee and M. J. Conry Bishopstown and Ballincollig (UCC), Co. Cork, 1964* — J. Lee Kennedy Arboretum, Slievecoiltia, Co. Wexford, 1968 — M. Bulfin and M. Ryan Kilpatrick and Derrybrennan, Co. Kildare (with Bord na Móna) 1973 — R. F. Hammond and J. Bouma Miscellaneous General Soil Map of Ireland, 1969 Survey of some Midland sub-peat mineral soils (with Bord na Móna), 1971 — M. L. Carey The Potential of Irish Land for Livestock Production, 1972 — J. Lee and S. Diamond Soils of Annascaul Pilot Area, 1973 — M. J. Conry and T. O'Shea Survey of cut-over and sub-peat mineral soils, Cnoc Dioliun Group (with Bord na na Móna), 1973 — T. A. Barry, M. L. Carey and R. F. Hammond Soils of Upperchurch Farm, Co. Tipperary, 1974 — P. Whelan and M. J. Conry Map of soils of West Mayo, 1975 — J. Kiely, S. Diamond, P. J. Burke and T. Collins The Peatlands of Ireland (map and bulletin), 1979 — R. F. Hammond Soils around Scarriff, Co. Clare, 1979 — T. F. Finch *Out of print Soil Survey Bulletin No. 36 ISBN 0-905442-49-0 Soil Associations of Ireland and Their Land Use Potential Explanatory Bulletin to Soil Map of Ireland 1980 by M. J. Gardiner and T. Radford NATIONAL SOIL SURVEY OF IRELAND An Foras Talúntais (The Agricultural Institute) Published by An Foras Talúntais, 19 Sandymount Avenue, Dublin 4 1980 Printed by Mount Salus Press Limited, Tritonville Road, Sandymount, Dublin 4. CONTENTS Soil Survey Publications 1962-79 ......................................................................................................... ii Foreword .............................................................................................................................................. iii Acknowledgements ................................................................................................................................v Chapter Page 1 Introduction ..............................................................................................................................i 2 Soil formation in Ireland ........................................................................................................3 The soil forming processes .................................................................................................3 Factors of soil formation ....................................................................................................4 3 Soil survey method ................................................................................................................15 The soil profile .................................................................................................................15 Definition of terms used ...................................................................................................18 Soil profile analysis ..........................................................................................................20 4 Soil classification ...................................................................................................................25 Great soil groups ..............................................................................................................25 Soil series .........................................................................................................................29 Soil associations ...............................................................................................................29 5 The soil map legend ...............................................................................................................31 Physiographic divisions ....................................................................................................31 The legend ........................................................................................................................34 6 Soil associations of mountain and hill ..................................................................................39 7 Soil associations of hills .........................................................................................................47 8 Soil associations of rolling lowland ......................................................................................59 9 Soil associations of drumlins ................................................................................................85 10 Soil associations of flat to undulating lowland ....................................................................95 11 Potential land use of Irish soils ...........................................................................................125 Extent of soils in different physiographic divisions .......................................................125 Land use range ................................................................................................................128 Land resources of the development (IDA) regions ........................................................129 Marginal land .................................................................................................................131 Tillage land .....................................................................................................................134 References .........................................................................................................................................142 TABLES Table Page 1 Normal ranges of some trace elements in soils .................................................................. 23 2 Soil classification scheme ............................................................................................. 25 3 Extent of each soil association .....................................................................................126 4 Drumlin soils grouped by drainage status ....................................................................127 5 Lowland soils grouped by parent material and drainage status .....................................127 6 Extent of use range classes ..........................................................................................128 7 Land resources of IDA development regions ...............................................................130 8 Use range of soils of IDA development regions ...........................................................131 9 Extent of marginal land by country and province .........................................................132 10 Extent of marginal land by county ...............................................................................132 11 Extent of different kinds of marginal land ...................................................................133 12 Soils suitable for tillage in Ireland ...............................................................................135 13 Extent of tillage land by province ................................................................................137 14 Quality of tillage land by province ..............................................................................138 15 Extent of tillage land by county ...................................................................................139 16 Tillage suitability classes on a county basis .................................................................140 17 Total corn, roots, green crops and fruit (1977) .............................................................141 FIGURES Page 1 Principal rock types ........................................................................................................ 5 2 Glacial geology ..............................................................................................................9 3 Mean annual rainfall ..................................................................................................... 11 4 Average number of raindays per year ........................................................................... 11 5 Diagrammatic representation of hypothetical soil profiles ............................................ 17 6 Percentages of clay, silt and sand in the basic texture
Recommended publications
  • Cultivation of Soils for Forestry
    Forestry Commission ARCHIVE Forestry Commission Bulletin 119 Cultivation of Soils for Forestry FORESTRY COMMISSION BULLETIN 119 Cultivation of Soils for Forestry D.B. Paterson and W. L. Mason Forest Research, Silviculture North Branch, Northern Research Station, Roslin, Midlothian EH25 9SY Forestry Commission, Edinburgh © Crown copyright 1999 Applications for reproduction should he made to HMSO, The Copyright Unit St Clements House, 2-16 Colegate, Norwich NR3 1BQ ISBN 0 85538 400 X Paterson, David B. and Mason, William L., 1999. Cultivation of Soils for Forestry. Bulletin 119. FDC 237:114:(410) KEYWORDS: Forestry, Cultivation, Soils Acknowledgements Special thanks are due to Chris Quine, Silviculturist at Northern Research Station, who made available his unpublished Cultivation Review and many background papers and references. We thank the project leaders, research foresters and workers, past and present in Silviculture (North), and the former Site Studies and Physiology Branches who initiated and managed the experiments reported here and gave permission for their results to be used. The statistical services of I.M.S. White are gratefully acknowledged. The reports of Technical Development Branch (formerly Work Study) on trials of cultivation machinery have been heavily used. Many authors outside the Forestry Commission have provided valuable information - with particular thanks to R. Schaible, M. Carey and E. Hendrick in Ireland and D.C. Malcolm of Edinburgh University. Numerous helpful comments have been made by Graham Pyatt, Richard Toleman, John Morgan, Duncan Ray, David Henderson- Howat and Brian Spencer. Karen Chambers edited and substantially improved the structure and presentation of an early draft. Finally, we are grateful to Madge Holmes for typing various drafts, Glenn Brearley for illustrations and John Parker for editorial and publishing services.
    [Show full text]
  • Diversity and Classification Problems of Sandy Soils in Subboreal Zone (Central Europe, Poland)
    Diversity and classification problems of sandy soils in subboreal zone (Central Europe, Poland) Michał Jankowski Faculty of Biology and Earth Sciences, Nicolaus Copernicus University, Toruń, Poland, Email [email protected] Abstract The aim of this study was to present some examples of sandy soils and to discuss their position in soil systematics. 8 profiles represent: 4 soils widely distributed in postglacial landscapes of Poland (Central Europe), typical for different geomorphological conditions and vegetation habitats (according to regional soil classification: Arenosol, Podzolic soil, Rusty soil and Mucky soil) and 4 soils having unusual features (Gleyic Podzol and Rusty soil developed in a CaCO 3-rich substratum and two profiles of red-colored Ochre soils). According to WRB (IUSS Working Group WRB, 2007), almost all of these soils can be named Arenosols. Considering their individual morphological features (stage of development, sequence of horizons) and different ecological value, most of the studied soils should be classified into other Reference Soil Groups or even distinguished in individual units. Key Words Soil classification, Soil geography, Soil morphology, Arenosols, Podzols, Sand. Introduction Soils developed from loose quartz sands generally represent the least fertile mineral soils in the World. According to WRB soil classification (IUSS Working Group WRB 2007), one genetic variant - Podzols - is distinguished as individual unit from that textural group of soils. Most of the other sandy soils can only be classified as Arenosols, irrespective to their development rate, soil horizons sequence or ecological properties. Such arrangement does not reflect the real diversity of sandy soils, especially in comparison to the number of divisions covering soils of heavier texture.
    [Show full text]
  • Alteration of Rocks by Endolithic Organisms Is One of the Pathways for the Beginning of Soils on Earth Received: 19 September 2017 Nikita Mergelov1, Carsten W
    www.nature.com/scientificreports OPEN Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth Received: 19 September 2017 Nikita Mergelov1, Carsten W. Mueller 2, Isabel Prater 2, Ilya Shorkunov1, Andrey Dolgikh1, Accepted: 7 February 2018 Elya Zazovskaya1, Vasily Shishkov1, Victoria Krupskaya3, Konstantin Abrosimov4, Published: xx xx xxxx Alexander Cherkinsky5 & Sergey Goryachkin1 Subaerial endolithic systems of the current extreme environments on Earth provide exclusive insight into emergence and development of soils in the Precambrian when due to various stresses on the surfaces of hard rocks the cryptic niches inside them were much more plausible habitats for organisms than epilithic ones. Using an actualistic approach we demonstrate that transformation of silicate rocks by endolithic organisms is one of the possible pathways for the beginning of soils on Earth. This process led to the formation of soil-like bodies on rocks in situ and contributed to the raise of complexity in subaerial geosystems. Endolithic systems of East Antarctica lack the noise from vascular plants and are among the best available natural models to explore organo-mineral interactions of a very old “phylogenetic age” (cyanobacteria-to-mineral, fungi-to-mineral, lichen-to-mineral). On the basis of our case study from East Antarctica we demonstrate that relatively simple endolithic systems of microbial and/or cryptogamic origin that exist and replicate on Earth over geological time scales employ the principles of organic matter stabilization strikingly similar to those known for modern full-scale soils of various climates. Te pedosphere emergence is attributed to the most ancient forms of terrestrial life in the Early Precambrian which strongly aided the abiotic decay of rocks.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin
    Geologia Croatica 56/1 83–100 23 Figs. 6 Tabs. ZAGREB 2003 Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin Goran DURN Key words: Terra rossa, Parent materials, Composi- relict soil formed during the Tertiary and/or hot and humid periods of the Quaternary. However, some recent investigation in the Atlantic tion, Origin, Mediterranean region. coastal region of Morocco (BRONGER & SEDOV, 2002) show that at least some terra rossa previously referred to as polygenetic relict soils should be regarded as Vetusols. In some isolated karst terrain, terra Abstract rossa may have formed exclusively from the insoluble residue of lime- In the past, the term “terra rossa” became quite a common indication stone and dolomite but much more often it comprises a span of parent for all limestone derived red soils in the Mediterranean region. Today, materials including, for example, aaeolian dust, volcanic material or in some classification systems based on the Mediterranean climate as sedimentary clastic rocks which were derived on carbonate terrain via the major soil differentiating criterion, the term terra rossa is used as a different transport mechanisms. BOERO & SCHWERTMANN (1989) name for the soil subclass “Modal Fersiallitic Red soil” when situated concluded that it is of little relevance for the process of rubification on limestones (DUCHAUFOUR, 1982). However, several national whether the primary Fe sources are autochthonous or allochthonous as soil classifications (e.g. Croatian, Italian, Israeli) retained the term long as the general pedoenvironment remains essentially suitable for “terra rossa” for the hard limestone derived red soils. The nature and the formation of terra rossa.
    [Show full text]
  • Soils and Their Main Characteristics
    Higher Geography Physical Environments Biosphere Soils Higher Geography course The 3 types of soil studied as part of the Higher Geography course are: • Brown Earths •Podzols •Gleys Characteristics of Brown Earths • Free draining • Brown/reddish brown • Deciduous woodland • Litter rich in nutrients • Intense biological activity e.g. earthworms • Mull humus Brown Earth Profile • Ah-topsoil dark coloured enriched with mull humus, variable depth • B - subsoil with distinctive brown/red brown colours • Lightening in colour as organic matter/iron content decreases with depth Brown Earth: Soil forming factors • Parent material • Variable soil texture •Climate • Relatively warm, dry • Vegetation/organisms • Broadleaf woodland, mull humus, indistinct horizons • Rapid decomposition • Often earthworms and other mixers • Topography • Generally low lying •Time • Since end of last ice age c10,000 years Organisms in Brown Earths False colour SEM of mixture of soil fungi and bacteria Help create a good and well aggregated, aerated and fertile crumb structured soil Thin section of soil showing enchytraeid faecal material Earthworm activity is important in soil mixing Uses of Brown Earths • Amongst the most fertile soils in Scotland • Used extensively for agriculture e.g. winter vegetables • Fertilisers required to maintain nutrient levels under agriculture • Occurring on gently undulating terrain - used extensively for settlement and industry • Sheltered sites suit growth of trees Test yourself: Brown Earths Write down 3 characteristics of a brown earth
    [Show full text]
  • Soils of County Clare
    Copyright of Teagasc, The Agriculture and Food Development Authority Soil Survey Bulletin No. 23 Soils of County Clare by T. F. Finch (Report compiled by T. F, Finch, E. Culleton and S. Diamond) National Soil Survey of Ireland An Foras Taluntais (THE AGRICULTURAL INSTITUTE) Published by An Foras Taluntais, 33 Merrion Road, Dublin 4 Price: £1.50 June, 1971 PREFACE This publication, Soil Survey Bulletin No. 23, presents the findings of the Soil Survey of County Clare. It is one of a series of county soil surveys being carried out by the National Soil Survey of An Foras Taluntais (The Agricultural Institute) for the purpose of providing basic information which can be used in optimum land-use planning. The field mapping was carried out at a scale of 1:10,560 (6 in. = 1 mile; 15 cm = 1.6 km) but the detail mapped on the field sheets is not shown on the published soil map at the scale of 1:126,720 (} in. 1 mile: 1.25 cm = 1.6 km) due to scale limitation. Copies of the field maps are available for consultation in the Soil Survey Office at Johnstown Castle, Wexford. Mr. T. F. Finch was responsible for the operation of this survey; he commenced work in the county in 1965 and completed the field investigations in 1968. Technical assistance was provided from time to time by Mr. P. Feeney, Mr. T. O'Shea and Mr. T. Martin. Mr. S. Diamond gave assistance and advice in soil correlation, classification and land-use interpretation, and Mr. R. F.
    [Show full text]
  • Characteristics and Formation of So-Called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia)
    Characteristics and Formation of so-called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) J.P, Andriesse Characteristics and Formation of so-called Red-Yellw Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) This thesis will also be published as Communication nr. 66 of the Royal Tropical Institute, Amsterdam Characteristics and Formation of so-called Red^ellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) Proefschrift ter verkrijging van de graad van doctor in de Wiskunde en Natuur- wetenschappen aan de Rijksuniversiteit te Utrecht, op gezag van de Rector Magnificus Prof. Dr. Sj. Groenman, volgens besluit van het College van Dekanen in het openbaar te verdedigen op 8 decem- ber 1975 des namiddags te 4.15 uur door Jacobus Pieter Andriesse geboren op 28 maart 1929 te Middelburg Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use' Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the .Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. Promotores: Prof.Dr.Ir. L.J. Pons, Landbouwhogeschool, Wageningen Prof.Dr. R.D. Schuiling Dit proefschrift kwam in zijn volledigheid tot stand onder leiding van Prof.Dr.Ir. F.A. van Baren f Preface Sarawak - a geography of life 'Extensive, almost inaccessible swamps, stretching along the coast, must be passed to reach the hills which in their monotonous repetition of heights and valleys wear down the traveller, but from where the lofty mountains beyond beckon to carry on' I dedicate this thesis to the memory of my late parents who through their efforts enabled me to receive the basic education which opened the door for my professional career, but who through their premature decease could not witness the results of their labour.
    [Show full text]
  • Rare Earth Elements Dynamics Along Pedogenesis in a Chronosequence
    Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils Marie Vermeire, Sophie Cornu, Zuzana Fekiacova, Marie Detienne, Bruno Delvaux, Jean-Thomas Cornélis To cite this version: Marie Vermeire, Sophie Cornu, Zuzana Fekiacova, Marie Detienne, Bruno Delvaux, et al.. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, Elsevier, 2016, 446, pp.163 - 174. 10.1016/j.chemgeo.2016.06.008. hal-01466196 HAL Id: hal-01466196 https://hal.archives-ouvertes.fr/hal-01466196 Submitted on 13 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemical Geology 446 (2016) 163–174 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils Marie-Liesse Vermeire a,⁎, Sophie Cornu b, Zuzana Fekiacova b, Marie Detienne a, Bruno Delvaux a,Jean-ThomasCornélisc a Université catholique de Louvain, Earth and Life Institute, ELIe, Croix du Sud 2 bte L7.05.10, 1348, Louvain-la-Neuve, Belgium b Aix-Marseille Université, CNRS, IRD, CEREGE UM34 et USC INRA, 13545, Aix en Provence, France c Soil-Water-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium article info abstract Article history: Rare earth elements (REE) total concentration and signature in soils are known to be impacted by successive soil- Received 30 September 2015 forming processes.
    [Show full text]
  • Bacterial Diversity in Soils of Different Hungarian Karst Areas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Microbiologica et Immunologica Hungarica 65 (4), pp. 439–458 (2018) DOI: 10.1556/030.65.2018.002 First published online February 23, 2018 BACTERIAL DIVERSITY IN SOILS OF DIFFERENT HUNGARIAN KARST AREAS 1,2 2 1 3 MONIKA´ KNÁB ,TIBOR SZILI-KOVÁCS ,KÁROLY MÁRIALIGETI ,JÁNOS MOGA´ and ANDREA K. BORSODI1* 1Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary 2Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Hungarian Academy of Sciences, Budapest, Hungary 3Department of Physical Geography, ELTE Eötvös Loránd University, Budapest, Hungary (Received: 5 June 2017; accepted: 21 November 2017) Karst areas have great environmental importance as sources of subsurface water and often maintain very sensitive ecosystems. In recent years, increasing number of microbiological studies focused on the bacterial communities of karst soils. In this study, diversity examinations on two distinct Hungarian karst areas, Aggtelek and Tapolca, were performed using parallel cultivation and molecular cloning methods. The phylogenetic affiliation of bacterial strains and molecular clones was determined based on their 16S rRNA gene sequences. Bacterial isolates were identified as members of the phyla Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Besides the taxa identified by cultivation, members of the phyla Chloroflexi, Cyanobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimona- detes were detected by the cloning. The difference in the composition of soil bacterial communities was related to geographic locations and soil types. Both the highest and the lowest bacterial diversities were detected in samples from Aggtelek National Park, characterized by Leptic Luvisol and Rendzic Leptosol soil types.
    [Show full text]
  • Rendzina) on Littoral Plains and Hilly Areas, 2- Hydromorphic Black Soil
    Genesis and Evolution of Black Soil in the Eastern Mediterranean Hussam HAG HUSEIN, Bernhard Lucke, Wahib Sahwan, and Rupert Bäumler EGU 2020 1 Soil fertility degradation in the Middle East…myth or reality? The environmental history of the Middle East is not an issue of a fertile land becoming desert. Most of it is desert and it always has been. The precious rain from the Mediterranean falls for 100 km or so from the coast, creating some fertile areas, as isolated islands that were not desert and they still are not. www.google.com However, whatever the definition is used, there is quite a lot of desert impact in the equation (evaporation, aeolian dust). The Eastern Mediterranean Located in the eastern corner of the Mediterranean Sea Submitted to Mediterranean climate condition with meld wet winter and hot dry summer The soil is red Mediterranean (terra rossa) with red color and poor of organic carbon and high of carbonates www.google.com 3 Black Soil in the Eastern Mediterranean The occurrence of such soil is occasionally in Mediterranean because of the climate condition with xeric moisture and thermic temperature soil regimes, which is not favorited for forming and developing such kind of soil However, it is still occurring at a less extending in different climatic zones from xeric to aridic and called SAWDA’A Their current occurrence rise many questions about the conditions of formation and type of paleoclimate that prevailed Theories on their formation in the Mediterranean region are not in general agreement The black soil was studied at five bio-climate areas according to Pluvio- thermic Equation of Emberger (1955): Upper humid Cold, lower sub-humid Fresh and temperate Upper semiarid www.google.com Martials and Methods These areas submitted to meditteranian climate, frish winter, hot dry summer with annual precipitation from 200 to more than 1000 mm The soil moisture regime is xeric and the temperature soil regime is thermic Climax vegetation is -Pinus brutia forest; -maquis mainly Quercus in wet areas.
    [Show full text]
  • Review of the Evidence Base for the Status and Change of Soil Carbon Below 15 Cm from the Soil Surface in England and Wales
    Department for Environment, Food and Rural Affairs Research project final report Project title Review of the evidence base for the status and change of soil carbon below 15 cm from the soil surface in England and Wales Sub-Project iii of Defra Project SP1106: Soil carbon: studies to explore greenhouse gas emissions and mitigation Defra project code SP1106 Contractor SKM Enviros Organisations Rothamsted Research / North Wyke Cranfield University British Geological Survey Report authors Andy Gregory ([email protected]), Andy Whitmore, Guy Kirk, Barry Rawlins, Karl Ritz, Phil Wallace. Project start date October 2010 Sub-project end date March 2011 Sub-project iii: Review of the evidence base for the status and change of soil carbon below 15 cm from the soil surface in England and Wales Executive summary The world‟s soils contain more carbon (C), predominantly in organic matter (OM), than the atmosphere and terrestrial plants combined. Our knowledge of soil C is largely restricted to the topsoil, but more than half of soil C is stored at depths lower than 15 cm in the subsoil. Subsoil C represents a little-understood component of the global C cycle, with potential implications with respect to predicted changes in climate; it is important that the level of understanding of subsoil C in England and Wales is clarified and that potential knowledge gaps are identified. The overall aim of this review was to evaluate the current status and dynamics of subsoil C in England and Wales by reviewing the best-available evidence and by sensible extrapolation. Further objectives sought to review the source and stability of subsoil C in general, to identify the key gaps in knowledge, and to seek evidence on how subsoil C may respond to imposed (soil management) or natural (climate change) changes in contributing factors in the future.
    [Show full text]