US EPA, Pesticide Product Label, VOLTA AGRICULTURAL
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. V. Bayer AG and Monsanto Company Comment: the Sierra Club
ATTN: Kathleen S. O'Neill Chief, Transportation, Energy & Agriculture Section Antitrust Division United States Department of Justice 450 5th Street, NW, Suite 800 Washington, DC 20530 Petition in opposition to proposed U.S. v. Bayer AG and Monsanto Company settlement and merger: A merger of agrochemical giants Bayer and Monsanto would create the world's largest seed and pesticide maker. I am afraid this move will reduce competition, raise prices for consumers and farmers, and result in an unacceptable degree of control over the agricultural industry and our food supply. I am very concerned about pollinators and the increased risks to bees, butterflies and birds with the increase of Bayer's neonicotinoids. Both companies produce corn products engineered to imply the use of harmful pesticides they manufacture. The production of corn uses high amounts of nitrogen- based fertilizers and the excess sediment is contaminating our waterways, therefore I am deeply worried about increased corn production from this merger. The heavy nutrient runoff from corn is widely attributed to exacerbating the marine "Dead Zone" in the Gulf of Mexico, in which algal blooms create hypoxic conditions wherein oxygen concentration is in such low levels that marine life suffocates and dies. I urge the Department of Justice to do more prevent the Bayer-Monsanto seed and pesticide platform from growing too strong by stopping this merger. If this merger is allowed, it should require more pesticide and seed divestments in order to protect our agriculture and food supply. This merger is anti-competition, if it is approved it will fail to protect farmers, consumers and the environment by allowing further consolidation of the industrial agriculture sector. -
The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food
STUDY Requested by the DEVE committee The use of pesticides in developing countries and their impact on health and the right to food Policy Department for External Relations Directorate General for External Policies of the Union EN PE 653.622 - January 2021 DIRECTORATE-GENERAL FOR EXTERNAL POLICIES POLICY DEPARTMENT STUDY The use of pesticides in developing countries and their impact on health and the right to food ABSTRACT This study provides a broad perspective on the main trends regarding the use of pesticides in developing countries and their impacts on human health and food security. Information is provided on the challenges of controlling these hazardous substances, along with the extent to which pesticides banned within the European Union (EU) are exported to third countries. The analysis assesses the factors behind the continuation of these exports, along with the rising demand for better controls. Recommendations are intended to improve the ability for all people, including future generations, to have access to healthy food in line with United Nations declarations. These recommendations include collaborating with the Rotterdam Convention to strengthen capacity building programmes and the use of the knowledge base maintained by the Convention; supporting collaboration among developing countries to strengthen pesticide risk regulation; explore options to make regulatory risk data more transparent and accessible; strengthen research and education in alternatives to pesticides; stop all exports of crop protection products banned in the EU; only allow the export of severely restricted pesticides if these are regulated accordingly and used properly in the importing country; and support the re-evaluation of pesticide registrations in developing countries to be in line with FAO/WHO Code of Conduct. -
The Era of Corporate Consolidation and the End of Competition Bayer-Monsanto, Dow-Dupont, and Chemchina-Syngenta
Research Brief October 2018 The Era of Corporate Consolidation and the End of Competition Bayer-Monsanto, Dow-DuPont, and ChemChina-Syngenta DISRUPT ECOSYSTEM ACCLERATE MONOPOLY THE EFFECTS OF CORPORATE CONSOLIDATION UNDERMINE FOOD SECURITY HARM SMALL PRODUCERS HAASINSTITUTE.BERKELEY.EDU This publication is published by the Haas Institute for a Fair and Inclusive Society at UC Berkeley This research brief is part of the Haas Institute's Shahidi Project from the Global Justice Program. The Shahidi Project (Shahidi is a Swahili word meaning “witness”) intends to demystify the power structures and capacities of transnational food and agricultural corporations within our food system. To that end, researchers have developed a robust database focusing on ten of the largest food and agricultural corporations in the world. See more at haasinstitute.berkeley.edu/shahidi. About the Authors Copyeditor Support Elsadig Elsheikh is the director Marc Abizeid Special thanks to the Food of the Global Justice program and Farm Communications at the Haas Institute for a Infographics Fund, which provided the seed Fair and Inclusive Society at Samir Gambhir funding for the Shahidi project. the University of California- Berkeley, where he oversees Report Citation Contact the program’s projects and Elsadig Elsheikh and Hossein 460 Stephens Hall research on corporate power, Ayazi. “The Era of Corporate Berkeley, CA 94720-2330 food system, forced migration, Consolidation and The End of Tel 510-642-3326 human rights, Islamophobia, Competition: Bayer-Monsanto, haasinstitute.berkeley.edu structural marginality and Dow-DuPont, and ChemChina- inclusion, and trade and Syngenta.” Haas Institute for development. a Fair and Inclusive Society at the University of California, Hossein Ayazi, PhD, is a Berkeley, CA. -
Mega-Mergers in the U.S. Seed and Agrochemical Sector the Political Economy of a Tight Oligopoly on Steroids and the Squeeze on Farmers and Consumers
MEGA-MERGERS IN THE U.S. SEED AND AGROCHEMICAL SECTOR THE POLITICAL ECONOMY OF A TIGHT OLIGOPOLY ON STEROIDS AND THE SQUEEZE ON FARMERS AND CONSUMERS MARK COOPER SENIOR FELLOW, CONSUMER FEDERATION OF AMERICA NOVEMBER 2017 ABSTRACT It is widely recognized that the increase in concentration in the cottonseed market resulting from the proposed Monsanto-Bayer merger violates the Department of Justice’s recently revised Horizontal Merger Guidelines by a wide, historically unprecedented margin. The companies argue that the economic efficiency resulting from the vertical integration of traits, seeds and agrochemicals offsets the harms to competition. This paper shows that the immense increase in vertical leverage and the ability to coordinate behaviors across multiple crops including cotton, corn, soybeans and canola magnifies the market power of the small number of firms that dominate the global field crop sector. The merger represents a dramatic increase in the market power of a sector that is already a “highly concentrated, vertically integrated, tight oligopoly on steroids” that raises prices, distorts innovation, and squeezes farmers and consumers. The only answer to this merger that makes economic sense is a loud and clear NO! While many anticompetitive practices will remain, a denial of the merger will prevent them from getting much worse and should signal the beginning of a broader effort to address the underlying economic problems and begin to break the political stranglehold that these firms have on the policymaking process. i CONTENTS I. INTRODUCTION 1 A Note on Political Economy Outline II. ANALYZING INDUSTRIAL ORGANIZATION AND EVALUATING MERGERS 3 The Welfare Economics of the Abuse of Market Power Structure, Conduct, Performance Horizontal Merger Analysis Vertical Integration and Leverage Coordination Effects and Incipient Competition III. -
2021 Row Crop Plant-Back Intervals for Common Herbicides
DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System Footnotes (continued) Authors 10 Replant only with Concep-treated or screen-treated seed. 2021 11 Needs 15 inches cumulative precipitation from application to planting rotational crop. Leah Collie, Program Associate - Weed Science 12 Needs 30 inches cumulative precipitation from application to planting rotational crop. Aaron Ross, Program Associate - Weed Science Tom Barber, Professor - Weed Science 13 Timeintervalisbasedon8oz/Aapplicationrateanddoesnotbeginuntil1inchof Row Crop Plant-Back rainfall is received. Tommy Butts, Assistant Professor - Weed Science 14If4oz/Aorlessusedand1inchofrainfall/irrigationreceivedafterapplication. Jason Norsworthy, Distinguished Professor - Weed Science 15 Days listed are based on University data and after receiving 1 inch of rainfall. 16 Enlist corn, cotton and soybeans can be planted immediately. University of Arkansas System, Division of Agriculture Intervals for 17 STS Soybeans can be planted immediately. Weed Science Program 18 Soil PH below 7.5. 19 ForNewpath/Prefaceuseratesgreaterthan8oz/Aperseason;onlysoybeansmaybe Common Herbicides planted the following year. 20 Rotation interval for soybean is 2 months where pH is less than 7.5. 21 Immediately if Poast Protected Crop. 22 If less than 15 inches of rainfall received since application, extend replant intervals to 18 months. If pH greater than 6.5, do not plant rice the following year. 23 18monthsforcottonifrateisgreaterthan5oz/AandpH>7.2. 24 Rotationtograinsorghumis18monthswhenSpartanisappliedat8oz/A. -
Weed Targeting Herbicide Management
EXTENSION EC708 Weed Targeting Herbicide Management Viacheslav I. Adamchuk, Extension Precision Agriculture Engineer Mark L. Bernards, Extension Irrigated Weed Specialist a major problem in summer annual crops like corn or George E. Meyer, Machine Vision Specialist sugarbeet may not even emerge when a winter annual Jerry A. Mulliken, Independent Crop Consultant crop like wheat is growing. RESOURCES ost producers use herbicides to manage weed Weeds exploit space not taken by the crop (inter- Minfestations. Generally, herbicides are applied row areas) and not disturbed by control methods such For more informa- at a uniform rate to the entire field. However, a as tillage or herbicides. Weeds vary in their response tion about precision uniform application may not be appropriate for all to different environmental cues and conditions that areas of a field. As precision agriculture technologies favor growth of one weed species over another. A few agriculture research, have developed, site-specific management of most studies have correlated landscape features and manage- education and dem- agricultural inputs, including herbicides, has become ment factors to the presence of weed patches. These onstration programs feasible. Differentiated application of herbicides is an characteristics include topography (or elevation), soil effective way to minimize herbicide costs, maximize pH, soil organic carbon (OC), fertility (nitrogen and at the University of weed control and prevent unnecessary environmental phosphorous), soil texture, field history, and herbicide Nebraska–Lincoln, waste. This circular provides basic guidance on site- use patterns. For example, topography, soil texture, specific weed management. and organic carbon can have a significant effect on visit the Web site at available moisture, which affects the ability of weeds http://precisionagriculture. -
How Herbicides Work: Biology to Application (Agdex 606-2)
How Herbicides Work Biology to Application Linda Hall Agriculture Research Division Alberta Agriculture and Rural Development Hugh Beckie Thomas M. Wolf Saskatoon Research Centre Saskatoon Research Centre Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada Disclaimer While every effort has been made to ensure accuracy, Alberta Agriculture and Rural Development does not accept responsibility for errors or ommissions. It remains the responsibility of the readers to follow product information contained on the product label or package insert. The publisher, editor and all contributors to this publication cannot be held responsible for publication errors or any consequence resulting from the use of this publication. Published by: Alberta Agriculture and Rural Development Information Management 7000 - 113 Street Edmonton, Alberta Canada T6H 5T6 Editors: Chris Kaulbars and Gerard Vaillancourt Graphic Designer: John Gillmore Electronic Composition: Sherrill Strauss and J.A. Serafinchon Photographs: Beth Hoar – Alberta Agriculture and Rural Development David Wall – Agriculture and Agri-Food Canada Tom Wolf – Agriculture and Agri-Food Canada Dow AgroSciences Copyright © 1999. All rights reserved by Her Majesty the Queen in the right of Alberta. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical photocopying, recording, or otherwise without written permission from Information Management, Alberta Agriculture and Rural Development. Tables/chemical -
Weed Control Guide for Ohio, Indiana and Illinois
Pub# WS16 / Bulletin 789 / IL15 OHIO STATE UNIVERSITY EXTENSION Tables Table 1. Weed Response to “Burndown” Herbicides .............................................................................................19 Table 2. Application Intervals for Early Preplant Herbicides ............................................................................... 20 Table 3. Weed Response to Preplant/Preemergence Herbicides in Corn—Grasses ....................................30 WEED Table 4. Weed Response to Preplant/Preemergence Herbicides in Corn—Broadleaf Weeds ....................31 Table 5. Weed Response to Postemergence Herbicides in Corn—Grasses ...................................................32 Table 6. Weed Response to Postemergence Herbicides in Corn—Broadleaf Weeds ..................................33 2015 CONTROL Table 7. Grazing and Forage (Silage, Hay, etc.) Intervals for Herbicide-Treated Corn ................................. 66 OHIO, INDIANA Table 8. Rainfast Intervals, Spray Additives, and Maximum Crop Size for Postemergence Corn Herbicides .........................................................................................................................................................68 AND ILLINOIS Table 9. Herbicides Labeled for Use on Field Corn, Seed Corn, Popcorn, and Sweet Corn ..................... 69 GUIDE Table 10. Herbicide and Soil Insecticide Use Precautions ......................................................................................71 Table 11. Weed Response to Herbicides in Popcorn and Sweet Corn—Grasses -
2020-2021 Truchoice® Offer Eligible Crop Protection Products
2020-2021 TruChoice® Offer Eligible Crop Protection Products Abundit® Edge herbicide* Durango® DMA® herbicide* Kerb® SC herbicide Rezuvant™ herbicide Accent® Q herbicide Elevore® herbicide Keystone® LA NXT herbicide Sendero® herbicide* Afforia® herbicide Embed® herbicide Keystone® NXT herbicide Sequoia® insecticide Aproach® fungicide Embed® Extra herbicide Kyber™ herbicide Simplicity® CA insecticide ® Aproach® Prima fungicide Enable® 2F fungicide Lannate LV insecticide Sonic® herbicide ® Basis® Blend herbicide Enlist Duo® herbicide Lannate SP insecticide Dupont™ Staple® LX herbicide ® ® Blackhawk® Naturalyte® Enlist One® herbicide LeadOff herbicide Starane Flex herbicide ® ® insecticide Enlite® herbicide Loyant herbicide Starane NXT herbicide ® ® ® Canopy Blend herbicide Entrust® SC Naturalyte® Matrix SG herbicide Starane Ultra herbicide Canopy® DF herbicide insecticide Mezavue® herbicide* Steadfast® Q herbicide Canopy® Ex herbicide Dupont™ Envive® herbicide Novixid™ herbicide Stinger® herbicide Chaparral™ herbicide* Dupont™ EverpreX® herbicide N-Serve® nitrogen stabilizer Stinger® HL herbicide Cinch® herbicide Fontelis® fungicide Opensky® herbicide Strongarm® herbicide Cinch® ATZ herbicide FulTime® NXT herbicide PastureGard® HL herbicide* Success® Naturalyte® Insecticides ® Cinch® ATZ Lite herbicide GF-120® NF PerfectMatch herbicide Surestart® II herbicide ® ® ® Cleantraxx® herbicide* Naturalyte Fruit Fly Bait Pindar GT herbicide Surpass NXT herbicide ® ® ® Clincher® CA herbicide Goldsky herbicide Pixxaro EC herbicide Surveil herbicide -
FORESTS and GENETICALLY MODIFIED TREES FORESTS and GENETICALLY MODIFIED TREES
FORESTS and GENETICALLY MODIFIED TREES FORESTS and GENETICALLY MODIFIED TREES FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. © FAO 2010 iii Contents Foreword iv Contributors vi Acronyms ix Part 1. THE SCIENCE OF GENETIC MODIFICATION IN FOREST TREES 1. Genetic modification as a component of forest biotechnology 3 C. -
Strategic Alliance Between Chem China and Syngenta As a Basis for Turning China Into the Agrochemical Power
The 13th International Days of Statistics and Economics, Prague, September 5-7, 2019 STRATEGIC ALLIANCE BETWEEN CHEM CHINA AND SYNGENTA AS A BASIS FOR TURNING CHINA INTO THE AGROCHEMICAL POWER Karolina Łopacińska Abstract The aim of the article is to recognize the impact of mergers and acquisitions conducted by Chinese companies in the area of agribusiness, on shaping the technological potential of the agri-food sector in China, on the example of a USD 43 billion worth takeover of the Swiss agribusiness giant – Syngenta, by the Chinese state owned chemical giant – ChemChina. The analysis covers both, the circumstances that led companies to conclude this agreement and its anticipated effects in face of implementation of the Chinese government’s strategy aimed at modernizing the agri-food industry of the country. An important background for the analyzes are created by the basic trends currently observed in the Chinese agri-food sector. The basic method adopted in the article is the case study analysis, which allows for a thorough diagnosis of the subject of the study, taking into account specific factors affecting the various stages of the merging process between the analyzed companies. The documents on the assumptions and directions of the implementation of the Chinese government’s strategy in the agri-food sector, as well as reports presenting trends in the development of Chinese agribusiness and the role of new technologies in shaping this development have also been used. Key words: agri – food industry, Chinese mergers and acquisitions, high technologies; JEL Code: L14, O1, Q16; Introduction In the literature, the problem of international mergers and acquisitions has been a subject of analysis for some time now. -
A Macro Perspective on the Relationship Between Farm Size and Agrochemicals Use in China
sustainability Article A Macro Perspective on the Relationship between Farm Size and Agrochemicals Use in China Lin Xie 1, Zeyuan Qiu 2,*, Liangzhi You 3 and Yang Kang 4 1 National School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, Guangdong 510642, China; [email protected] 2 Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA 3 Division of Environment and Production Technology, International Food Policy Research Institute, Washington, DC 20005, USA; [email protected] 4 Department of Statistics, Columbia University, New York, NY 10027, USA; [email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 3 November 2020; Published: 9 November 2020 Abstract: Agrochemicals are overused in China. One strategy to reduce agrochemical use is to increase farm size because of the potential effect of economy of scale. Existing studies at a micro scale present mixed and often conflicting results on the relationship between agrochemical use and farm size. This study aimed to assess that relationship from a macro perspective using an aggregated panel dataset in 30 provinces in China from 2009 to 2016. The empirical results confirm the existence of both economy and diseconomy of scale effects on agrochemical use in China. The agrochemical application rates decreased as the proportion of farms between 0.667 and 2 ha increased. The diseconomy of scale existed when significantly larger farms, such as the farms larger than 3.34 ha, continued to emerge. Given the fact that 78.6% of farms are under 0.667 ha in China, our results suggest that the reduction strategy based on only expanding farm size might achieve some initial success in reducing agrochemical use, but the effect would fade away and be reversed as significantly large farms continue to emerge.