Medicinal Aspects and Importance of Swertia Chirata Gejalakshmi Subramanian* Kayalvizhi Seralathan, Harikrishnan.N, V.Pavan Kumar 2 Faculty of Pharmacy, Dr.M.G.R

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Aspects and Importance of Swertia Chirata Gejalakshmi Subramanian* Kayalvizhi Seralathan, Harikrishnan.N, V.Pavan Kumar 2 Faculty of Pharmacy, Dr.M.G.R High Technology Letters ISSN NO : 1006-6748 Medicinal aspects and importance of Swertia Chirata Gejalakshmi Subramanian* Kayalvizhi seralathan, Harikrishnan.N, V.Pavan kumar 2 Faculty of Pharmacy, Dr.M.G.R. Educational and Research Institute, Velappanchavadi, chennai-771 Department of Pharmaceutical Analysis ,Seven Hills College of Pharmacy,Venkataramapuram,Tirupati-517561,Andhra Pradesh,India2 ABSTRACT Medicinal plants plays an vital role in various disorders because it produces less toxicity and more effective results for particular diseases. Among all the herbal plant swertiachirata is the most commonly used herb in Indian, British, American pharmacopoeias which has an high potency towards pharmacological actions. This herbs were used as traditional herb and folk remedies among herbalists. At present study reveals that swertia has high potency that drug which used for pharmaceutical purpose. The active compound in swetia is reported to be effective for treating bacterial, fungal, viral infection, carcinogenicity, diabetics, inflammation, etc. The aim of review work is to study about the phytochemistry, pharmacological activity, pharmacognostic activity. Keywords : swertiachirata, Anti- inflammatory activity, Carcinogenicity, Traditional medicine INTRODUCTION Swertia chirata belongs to family of Gentianaceae. this medicinal plant is always native to temperate Himalaya.The Swertia chirata originated at an altitude of 1200-1300m from Bhutan to Kashmir. About 80% of the world population in developed and developing countries need medicinal plant for their basic and primary health care. Because Herbal plants are considered as rich source of phytochemical ingredients Swertiamarin, Amarogentin, Swechirin, Mangiferin, Sweroside, Gentianine, Amaroswerin, Oleanolic acid, Swertanoone, Ursolic acid are the chemical present in swertiawhichproduces efficacyforhuman purpose 1 . swertia is an ancient herb. The another name for swertia includes [Nepali Neem] because of annual/biennial herb in the forests of Nepal. This shrub / herb exists in the sub-temperate region of Himalayas at an altitude of 1200 to 1500 meters and grows up to the height of 1.5 meters from Bhutan to Kashmir 2,3,4,5 . The main purpose of this medicinal herbs includes safety, efficacy, easily availability and less toxicity 6, 7 . Its therapeutic usage is recorded in IP codex, the British and the American pharmacopoeias and also in some Indian Traditional systems of m edicines ie. Ayurveda, Unani and Siddha. The swertia was formulated in basic of bitter tonic in Ayurvedic Herbal system to cure fever and for curing various other diseases 1 Nearly 90 tonnes of swertia have been traded Nepal, wherase only 1.5 tonnes have been traded from Midwestern 9,10 BOTANICAL PROFILE OF SWERTIA Volume 27, Issue 5, 2021 510 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 English: Chirata (Indian Gentian) Hindi: Charayatah Arabic: Qasabuzzarirah Bengali: Chireta Burma: Urdu: Chiarayata, Persian: Nenilawandi, Panjabi: CharaitaSekhagi Marathi: Chirayita Malayalam: Nilaveppa Tamil: Nilavembu, Shirattakuchi Nepal: Cherata Telugu: Nilavembu Gujarati: Chirayata Kannada: Nilavebu Deccan: Charayatah Sanskrit: Anaryatikta, Bhunimba, Chiratika, Ardhatika, varantaka, Qasabuzzarirah 11.12,13,14 TABLE 1: VERNACULAR NAMES OF SWERTIA Volume 27, Issue 5, 2021 511 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 Kingdom: Plantae Phylum: Tracheophyta Class: Magnoliopsida Order: Gentianales Genus: Swertia Species: chirata Family: Gentianaceae Binomial Name: Swertia chirata Buch Ham TABLE 2 : TAXONOMY OF SWERTIA CHIRATA 15 Charak Samhita Stanyashodhan mahakashaye 16 , Trsnanigrahana mahakashaye 17 and 18 in tikta skandha Susurut Samhita Aragvadhadi gana 19 Priyanighantu Satpushpadi Varga 20 Acharya Vagbhat Aragvadhadi gana 21 Nighantu Adarsh Kiratadi Varga 22 Abhidhaanratnamala. Tiktadravyasakandha 23 TABLE 3 : CLASSIFICATION IN AYURVEDIC FORM 24 PERIOD OF OCCURANCES At October and November the plant is quickly spreads from seed which is shed Herbs.Thus it can be cultivated in suitable area in the temperate Himalayas. The Seeds obtained seems to be appears very small in size, therefore it should be seedlings transplanted later in the field and sown in nursery. MICROSCOPIC DESCRIPTION: chloroplasts and mesophyll tissue of swertialeaves was found in inner tissue (parenchyma). The epidermis occurs in layer which is covered by lined cuticle. Then stomata was found in lower surface. The layer of cork ( 2-4 ) was found in transected roots of swertia. Then secondary cork (4-12 ) appears in parenchymataous cells which are thick-walled. Companion cells, thin-walled strands of sieve tubes and phloem parenchyma has been observed in secondary phloem. tracheids cells, vessels and xylem fibres was observed in secondary xylem MACROSCOPIC DESCRIPTION The stem surface of swertia was smooth and no hairs or projections and 1m in length and 6 mm in diameter and yellowish-brown to purplish in colour. The was described in 2 shapes 1. slightly quadrilateral(upper part of stem) 2.Cylindrical(lower part). The shape of flowers occur in oval with wide of 2-3 mmwith two glandular depressions near the base of each of corolla lobes. The length of fruit 0.16 mm to 0.45 mm in breadth with irregular oval in shape [25,26] Volume 27, Issue 5, 2021 512 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 THE ISOLATED CHEMICAL COMPOUND FROM SWERTIA AND ITS BIOLOGICAL ACTION 2, 27,28, 29 CHEMICAL BIOLOGICAL ACTIVITY CONSTITUTENTS Mangiferin Anti viral, Immunomodulatory, Anti -inflammatory, Antioxidant, Anti -diabetic, Antitumor, Anti-HIV, Chemo preventive, Hypoglycemic, Ant atherosclerotic, Antiparkinson. Swertiamarin. CNS depressant, Anticholinergic, Antibacterial, Anticancer, Anti -hepatitis, Antiatherosclerotic, Cardio-protective, Anti-diabetic, Anti-arthritic Amaroswerin Gastroprotective. Amarogentin Antileishmanial, Topoisomerase inhibitor, Anticancer, Anti -diabeti c, Gastro protective, Anthelmintic Swerchirin Hepatoprotective, Hypoglycemic, Pro -hematopoietic, Chemo preventive, Blood Sweroside. Hepatoprotective, Antibacterial, Hyper pigmentation, Osteoporosis, Anthelmintic Gentianine Antimalarial, Anti -hepatitis B virus, Antipsychotic. Oleanolic acid Antimicrobial, Antitumor, Anti -inflammatory, Antioxidant activity PHYTOCHEMISTRY STUDIES 30,31,32 Chiratin and Ophelic acid has been obtained from swertia. In general they exists in both amorphous or crystalline substances. Apart from this other important chemical constituents such as Xanthones, Xanthone glycoside and a flavonoid mangiferine, calcium, magnesium, iron, potassium and sodium were also found in swertia . MEDICINAL APLICATION OF SWERTIA CHIRATA 33 S.NO PLANT PARTS USED BIOLOGICAL ACTION 1. Whole plant Used in several traditional and indigenous systems of medicines, such as Ayurveda, Unani, and Siddha 2. Whole plant Used in British and American pharmacopeias as tinctures and infusions 3. Root Serves as a drug and an effective tonic for general weakness, fever, cough, joint pain, asthma, and the common cold 4. Whole plant Leaves and chopped stems are soaked overnight in water. A paste is prepared and filtered with 1 glass of water. This preparation is given once a day for 2–3 days in headaches and blood pressure. 5. Whole plant For fever with tremor, whole plant cut Volume 27, Issue 5, 2021 513 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 into small pieces is boiled in 1/2 L of water until the volume is reduced to less than half glass. The filtered water is stored in a glass bottle and half spoon is given to children once a day for 2 days and for adult 1 spoon once in a day for 2 days or varies to three times a day until cured. 6. Whole plant Boiled in water and one cup of decoction is taken orally to cure malaria 7. Whole plant Paste of the plant is applied to treat skin diseases such as eczema and pimples 8 Whole plant Liver disorders; stomach disorders like dyspepsia and diarrhoea, intestinal worms 9. Whole plant Hiccups and vomiting, ulcers, gastrointestinal infections, and kidney diseases 10. Whole plant Used in combination with other drugs in cases of scorpion bite. BIOLOGICAL ACTIVITY OF SWERTIA CHIRATA 34 ACTIVI PART USED TEST SOLVENT TEST CONTROL TOXI TY METHOD SYSTEM ORGANISM / CITY MODELS Anti - Whole plant In vitro Ethanol Escherichia coli Ciprofloxaci Nil bacterial Klebsiella pneumonia Pseudomonas aeruginosa. Anti- Whole plant In vitro DCM; Staphylococcus Kanamycin - Nil bacterial ethanol aureus 30 μg/disc Anti- Stem In vitro Ethanol Staphylococcus Chlorphenicol Brine bacterial aureus 30 μg/disc shrimp assay– positiv e Anti- Whole plant In vitro Methanol Aspegillusniger Amphotericin Nil fungal Anti- Whole plant In vitro Methanol Leishmania - Negati leishman donovani ve for ial cytoto xicity Antihel Whole plant In vitro Water: Haemonchuscon Levamisole Nil mintic methanol tortus 0.55 mg/ml Antimal Leaves / stem In vitro Methol:PE:w Plasmodium Parasitized red Nil arial ater:ethanol falciparum blood cells and 10 μCi Anti- Whole palnt In vitro 50% ethanol HepG 2.2.15 Tenofovir Nil hepatitis cells line Volume 27, Issue 5, 2021 514 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 B virus Antiinfla Aerial part In vivo Petroleum N/A Mice treated Nil mmatory with vehicle or Diclofenac (10 mg/kg) Hypogly Whole plant In vivo ethanol N/A Mice treated Nil cemic with vehicle Antidiab Whole plant In vitro Ethanol:HEX STZNAD(strept Metformin Nil etic ozotocinnicotina (100 μg/kg) mide) induced
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • International Journal of Ayurvedic and Herbal Medicine 2:2 (2012) 294:299 Journal Homepage
    ISSN-2249-5746 International Journal Of Ayurvedic And Herbal Medicine 2:2 (2012) 294:299 Journal Homepage http://interscience.org.uk/index.php/ijahm Phytochemical Studies on Swertia cordata (G. Done) Clark and Comparative Chromatographic Evaluation of Five Different Species of Swertia Karan M.,* Jamwal A., Vasisht K. University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India *Corresponding author:- Dr Maninder Karan University Institute of Pharmaceutical Sciences Panjab University, Chandigarh 160014, India Email: [email protected] Swertia cordata (G. Done) Clark is an important species of the genus Swertia (Family Gentianaceae) reputed for its medicinal properties in Ayurveda. The present study reports the isolation of two xanthones, 1-hydroxy-2,3,7-trimethoxyxanthone (1), 1-hydroxy-2,3,4,7-tetramethoxyxanthone (2) and one triterpenoid, lupeol (3) from S. cordata. The compounds (1) and (2) are being reported for the first time from S. cordata. Further, chromatographic comparison of five different species of Swertia viz. S. angustifolia Buch Ham. ex D. Don, S. chirata Buch Ham, S. cordata (G. Done), S. lurida (D. Don ex G. Done) C. B. Clarke and S. purpurascens (D. Don) A. Wall ex E. D. Clarke was made on the basis of TLC fingerprint profile to know how closely these species are related and to mark the similarities / dissimilarities between different Swertia species. Key words: Swertia species, xanthones, TLC fingerprint comparison INTRODUCTION The genus Swertia belongs to family Gentianaceae which is known to have about 700 species and 80 genera. The plants of this family are annual or perennial herbs. About 150 species are distributed in Asia, Europe, North America and Africa.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Genome and Metabolomic Based Approaches To
    GENOME AND METABOLOMIC BASED APPROACHES TO AUTHENTICATE Swertia chirata FROM ITS ADULTERANTS AND THEIR COMPARATIVE EVALUATION AGAINST HYPOXIA INDUCED OXIDATIVE STRESS IN RATS Thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY by KRITIKA KAUSHAL DEPARTMENT OF BIOTECHNOLOGY & BIOINFORMATICS JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, DISTRICT SOLAN, H.P., INDIA JULY, 2019 @ Copyright JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT JULY, 2019 ALL RIGHTS RESERVED SUPERVISOR’S CERTIFICATE This is to certify that the work reported in the Ph.D thesis entitled “Genome and Metabolomic based approaches to authenticate Swertia chirata from its adulterants and their comparative evaluation against hypoxia induced oxidative stress in rats” submitted by Ms. Kritika Kaushal at Jaypee University of Information Technology, Waknaghat, India, is the record of candidate’s own work carried out by him under our supervision. This work has not been submitted elsewhere for any other degree or diploma. (Dr. Anil Kant) Date: 20.08.2020 Associate Professor Department of Biotechnology Bioinformatics Jaypee University of Information Technology Waknaghat, Solan 173234 DECLARATION BY THE SCHOLAR I hereby declare that the work reported in the Ph.D. thesis entitled “Genome and Metabolomic based approaches to authenticate Swertia chirata from its adulterants and their comparative evaluation against hypoxia induced oxidative stress in rats” submitted at Jaypee University of Information Technology, Waknaghat, India is an authentic record of my work carried out under the supervision of Dr. Anil Kant. I have not submitted this work elsewhere for any other degree or diploma. (Kritika Kaushal) Date: Department of Biotechnology & Bioinformatics Jaypee University of Information Technology Waknaghat, Solan, India 173234 Dedicated to my Parents This thesis is dedicated to my caring and devoted parents, for all their love, support and encouragement.
    [Show full text]
  • Gentianaceae) in the Gentianella-Lineage As Revealed by Nuclear and Chloroplast DNA Sequence Variation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in Plant Systematics and Evolution 229, issues 1-2, 1-21, 2001 1 which should be used for any reference to this work High paraphyly of Swertia L. Gentianaceae) in the Gentianella-lineage as revealed by nuclear and chloroplast DNA sequence variation P. Chassot1, S. Nemomissa2, Y.-M. Yuan1, and P. KuÈ pfer1 1Institut de Botanique, Laboratoire de botanique e volutive, Universite de Neuchaà tel, Suisse 2The National Herbarium, BiologyDepart ment, Addis Ababa University, Ethiopia Abstract. The genus Swertia L., as currently occupya more derived position. Two of the latter de®ned, is polymorphic and mainly distributed in clades show a close relation with species of temperate regions of the northern hemisphere. Gentianella s. str., and one is included in a large Phylogenetic relationships between Swertia and clade comprising Comastoma, Jaeschkea and Lo- the other genera of the Swertiinae sensu Struwe matogonium. Selected character states and their et al. -unpubl. data) are discussed based on proposed polarity, such as number and structure cladistic analyses of DNA sequence data. The of nectaries, stylar and seedcoat characteristics, sequences used for this purpose include the trnL pollen morphology, fusion of ¯oral parts and -UAA) intron, the intergenic spacers -IGS) be- chromosome number are discussed in the context tween trnL -UAA) and trnF -GAA) exons, and of molecular data. Rugose, spinose, or winged between trnS -UGA) and ycf 9 exons of cpDNA, seeds are found mainlyin basal lineages, while as well as the ITS region of nrDNA.
    [Show full text]
  • Evaluation of Antioxidant, Antibacterial, and Antidiabetic Potential of Two Traditional Medicinal Plants of India: Swertia Cordata and Swertia Chirayita
    PHCOG RES. PHCOGORIGINAL RES.ORIGINAL ARTICLE ARTICLE Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita Priyanka Roy, Fatima I. Abdulsalam, D. K. Pandey, Aniruddha Bhattacharjee1, Naveen Reddy Eruvaram, Tabarak Malik Department of Biochemistry, Lovely School of Biotechnology and Biosciences, Lovely Professional University Jalandhar, Phagwara, Punjab, India, 1Department of Physiology, International Medical School, Management and Science University, Shah Alam, Selangor, Malaysia Submitted: 26-10-2014 Revised: 09-12-2014 Published: 02-06-2015 ABSTRACT Background: Swertia cordata and Swertia chirayita are temperate Himalayan medicinal plants Access this article online used as potent herbal drugs in Indian traditional systems of medicine (Ayurvedic, Unani and Website: Siddha). Objective: Assessment of Antioxidant, antibacterial, and antidiabetic potential of www.phcogres.com Swertia cordata and Swertia chirayita. Materials and Methods: Phytochemicals of methanolic DOI: 10.4103/0974-8490.157997 and aqueous extracts of the two Swertia species were analyzed. The antioxidant potential Quick Response Code: of all the extracts was assessed by measuring total phenolic content, total flavonoid content and free radical scavenging potential was assessed by 1,1‑diphenyl‑2‑picrilhydrazyl (DPPH) assay, antibacterial activity was assessed against various pathogenic and nonpathogenic bacteria in vitro by Kirby‑Bauer agar well diffusion method and antidiabetic activity was assessed by α-amylase inhibition. Results: Methanolic leaf extracts of both the species of Swertia contain significant antibacterial as well as anti‑diabetic potential, whereas methanolic root extracts of both species were found to have potential antioxidant activity. However, Swertia chirayita showed better activities than Swertia cordata although both species have good reputation in traditional Indian medicine.
    [Show full text]
  • Phytochemical, Antibacterial, Antiinflammatory and Analgesic Studies on Swertia Tetragona Edgew
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 13, Issue 1 Ver. V (Jan. – Feb. 2018), PP 41-50 www.iosrjournals.org Phytochemical, Antibacterial, Antiinflammatory And Analgesic Studies On Swertia Tetragona Edgew Bader GN1, Naqash A1, Ahad P1, Ali S2 1 Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, J&K-190006 2 School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062 Corresponding Author: Bader GN1 Abstract: Objective: To evaluate whole plant extracts of Swertia tetragona Edgew for antibacterial, anti- inflammatory and analgesic activity. Methods: Hydroacholic extract of powdered S. tetragona Edgew whole plant was prepared by Soxhlet apparatus using Ethanol: Water in a ratio of 80:20. The aqueous extract was prepared using cold maceration technique. The phytochemically analysis, HPTLC fingerprinting and pharmacological evaluation were carried out using standard procedures.Results: Phytochemical analysis revealed the presence of alkaloids, flavonoids, proteins, saponins and sterols. The phytochemical analysis was supported by HPTLC fingerprinting, which showed 12 peaks representing the phytochemical constituents present. The pharmacological evaluation revealed that both extracts possess good antiinflammatory activity (depicted by % inhibition of inflammation by 70.00 %, 72.10% and 74.07 % for hydro-alcoholic extract and 56.00 %, 59.00 % and 66.66 % for aqueous extract. The standard acelofenac decreased inflammation by 62.00 %, 64.05 % and 66.66 % under identical experimental conditions 1,2 and 3 hours post treatment) and analgesic activity (depicted by delay in reaction time in seconds by 8.5, 9 and 8.7 by hydro-alcoholic extract; 8.1, 7.8 and 7.5 by aqueous extract).
    [Show full text]
  • Review on Swertia Chirata As Traditional Uses to Its Pyhtochemistry and Phrmacological Activity
    Aleem et al Journal of Drug Delivery & Therapeutics. 2018; 8(5-s):73-78 Available online on 15.10.2018 at http://jddtonline.info Journal of Drug Delivery and Therapeutics Open Access to Pharmaceutical and Medical Research © 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited Open Access Review Article REVIEW ON SWERTIA CHIRATA AS TRADITIONAL USES TO ITS PYHTOCHEMISTRY AND PHRMACOLOGICAL ACTIVITY Abdul Aleem1, Hifzul Kabir2* 1PG Scholar, Department of Ilmul Advia, School of Unani Medical Education and Research; Jamia Hamdard, New Delhi. India 2,Assistant Professor, Department of Ilmul Advia, School of Unani Medical Education and Research; Jamia Hamdard, New Delhi. India ABSTRACT Swertia chirata (Gentianaceae), is a popular medicinal plant native to temperate Himalaya. The plant of Swertia chirata is found at an altitude of 1200-1300m, from Bhutan to Kashmir and in the Khasi hills at 1200-1500m. It also can be grown in sub-temperate territories between 1500-2100m altitudes. Chirata has an erect and about 2-3 ft long stem. Herbal medicinal plants are necessary for about for about 80% of the world population in developed and developing countries for their basic and primary health care required owing to better tolerability, superior empathy with human body and having lesser side effects. Herbal plants are considered as rich source of phytochemical ingredients. The main chemical ingredients are Swertiamarin, Amarogentin, Swechirin, Mangiferin, Sweroside, Gentianine, Amaroswerin, Oleanolic acid, Swertanoone, Ursolic acid. Phytochemical analysis divulges alkaloids, flavonoids, steroids, glycosides, triterpenoids, saponins, xanthones and ascorbic acid in all samples.
    [Show full text]
  • Download PDF (Inglês)
    Revista Brasileira de Farmacognosia 27 (2017) 105–111 ww w.elsevier.com/locate/bjp Original Article Metabolic profile and ␤-glucuronidase inhibitory property of three species of Swertia ∗ Swagata Karak, Gargi Nag, Bratati De Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, India a a b s t r a c t r t i c l e i n f o Article history: ␤-Glucuronidase inhibitors are suggested as potential hepatoprotective agents. Swertia chirayita (Roxb.) Received 29 February 2016 Buch.-Ham. ex C.B. Clarke, Gentianaceae, is known for its hepatoprotective and anti-hepatotoxic activ- Accepted 18 July 2016 ity in Ayurvedic system of medicine for ages. This plant is substituted by other species like S. decussata Available online 3 October 2016 Nimmo ex C.B. Clarke and S. bimaculata (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke. The aim of the study was to compare metabolite profile and ␤-glucuronidase inhibitory activity of these three important Keywords: species of Swertia and to identify the active constituents. S. chirayita (IC50 210.97 ␮g/ml) and S. decussata Swertia (IC 269.7 ␮g/ml) showed ␤-glucuronidase inhibitory activity significantly higher than that of silymarin, ␤-Glucuronidase 50 the known inhibitor of the enzyme. The activity of S. bimaculata was low. The metabolites present in the Xanthones Hepatoprotective three species were analyzed by HPLC and GC-MS based metabolomics approach. Five amino acids, twenty one organic acids, one inorganic acid, eight fatty acids, twenty one phenols including xanthones, eight sugars, seven sugar alcohols, five terpenoids and amarogentin were identified. Activities of the xan- thones mangiferin (IC50 16.06 ␮g/ml), swerchirin (IC50 162.84 ␮g/ml), decussatin (IC50 195.11 ␮g/ml), 1-hydroxy-3,5,8-trimethoxy xanthone (IC50 245.97 ␮g/ml), bellidifolin (IC50 390.26 ␮g/ml) were signifi- cantly higher than that of silymarin (IC50 794.62 ␮g/ml).
    [Show full text]
  • Fluorescent Chromosome Banding and Genome Size Estimation in Three Species of Swertia
    © 2017 The Japan Mendel Society Cytologia 82(5): 513–520 Fluorescent Chromosome Banding and Genome Size Estimation in Three Species of Swertia Myo Ma Ma Than1,2, Tapojita Samaddar1, Biplab Kumar Bhowmick1,3 and Sumita Jha1* 1 CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata- 700019, India 2 TWOWS Post Doc. & Senior Researcher, Network Activities Group, Mingalardon Orchid Garden, Yangon, Myanmar 3 Department of Botany, Scottish Church College, 1 and 3, Urquhart Square, Kolkata-700006, India Received June 23, 2017; accepted August 18, 2017 Summary Chromosomal attributes of the critically endangered medicinal plant Swertia chirayita along with its allied species S. nervosa and S. bimaculata are precisely essential to assess phylogenetic relationships. The present study deals with karyomorphometric analysis based on patterns of fluorescence chromosome banding and nuclear genome size estimation by flow cytometry reported for the first time in S. chirayita (2n=26), S. nervosa (2n=26) and S. bimaculata (2n=26). Fluorescent banding revealed the distinct differences in chromosomal CMA+ve/DAPI-ve heterochromatic sites among the species. There were six chromosomes with CMA+ve signals in S. chirayita and two chromosomes with CMA+ve signals in S. bimaculata whereas all chromosomes of S. nervosa displayed CMA+ve signals. Due to a difference in CMA banding pattern, proportion of GC rich regions differed among the chromosomes of S. chirayita (3.32%), S. nervosa (18.76%), and S. bimaculata (0.64%). S. bimaculata had the highest 2C DNA content (9.82 pg/2C) compared to S. nervosa (1.95 pg/2C) and S. chirayita (1.09 pg/2C).
    [Show full text]
  • Swertia Hongquanii, a New Species of Gentianaceae from Mt. Wuling
    A peer-reviewed open-access journal PhytoKeys 132: 1–10 (2019) Swertia hongquanii, a new species of Gentianaceae 1 doi: 10.3897/phytokeys.132.37009 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Swertia hongquanii, a new species of Gentianaceae from Mt. Wuling, southern China Jiaxiang Li1, Yongfu Xu1, Lijuan Zhao2 1 Faculty of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China 2 Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China Corresponding author: Lijuan Zhao ([email protected]) Academic editor: Petra De Block | Received 9 June 2019 | Accepted 31 July 2019 | Published 19 September 2019 Citation: Li J, Xu Y, Zhao L (2019) Swertia hongquanii, a new species of Gentianaceae from Mt. Wuling, southern China. PhytoKeys 132: 1–10. https://doi.org/10.3897/phytokeys.132.37009 Abstract Swertia hongquanii Jia X. Li, a new species of Gentianaceae, is described and illustrated from Mt. Wuling, southern China. It grows on the tops of steep limestone mountains surrounded by cliffs above an altitude of ca. 1400 m. This species resemblesSwertia bimaculata, but differs from the latter by the stem leaf blades 2.0–4.5 × 1.0–2.5 cm, ovate to ovate-cordate, base cordate and subamplexicaul, the seeds irregularly polyhedral and the seed coats minutely thorny and reticulate. Based on morphological traits, i.e. the in- florescence structure and the number and structure of the nectaries, the new species may be a member of series Maculatae. A key to the species of series Maculatae of section Ophelia is provided.
    [Show full text]
  • Dynamic Evolution and Phylogenomic Analysis of the Chloroplast Genome
    www.nature.com/scientificreports OPEN Dynamic evolution and phylogenomic analysis of the chloroplast genome in Received: 19 March 2018 Accepted: 31 May 2018 Schisandraceae Published: xx xx xxxx Bin Li1,2,3 & Yongqi Zheng1,2,3 Chloroplast genomes of plants are highly conserved in both gene order and gene content, are maternally inherited, and have a lower rate of evolution. Chloroplast genomes are considered to be good models for testing lineage-specifc molecular evolution. In this study, we use Schisandraceae as an example to generate insights into the overall evolutionary dynamics in chloroplast genomes and to establish the phylogenetic relationship of Schisandraceae based on chloroplast genome data using phylogenomic analysis. By comparing three Schisandraceae chloroplast genomes, we demonstrate that the gene order, gene content, and length of chloroplast genomes in Schisandraceae are highly conserved but experience dynamic evolution among species. The number of repeat variations were detected, and the Schisandraceae chloroplast genome was revealed as unusual in having a 10 kb contraction of the IR due to the genome size variations compared with other angiosperms. Phylogenomic analysis based on 82 protein-coding genes from 66 plant taxa clearly elucidated that Schisandraceae is a sister to a clade that includes magnoliids, monocots, and eudicots within angiosperms. As to genus relationships within Schisandraceae, Kadsura and Schisandra formed a monophyletic clade which was sister to Illicium. Chloroplasts are the photosynthetic organelle that provides energy for plants. Te chloroplast has its own genome. In angiosperms, most chloroplast genomes are composed of circular DNA molecules ranging from 120 to 160 kb in length and have a quadripartite organization consisting of two copies of inverted repeats (IRs) of approximately 20–28 kb in size, which divide the rest of chloroplast genome into an 80–90 kb large single copy (LSC) region and a 16–27 kb small single copy (SSC) region.
    [Show full text]