Private Water Wells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptosporidium and Water
Cryptosporidium and Water: A Public Health Handbook 1997 WG WCWorking Group on Waterborne Cryptosporidiosis Suggested Citation Cryptosporidium and Water: A Public Health Handbook. Atlanta, Georgia: Working Group on Waterborne Cryptosporidiosis. CDCENTERS FOR DISEASEC CONTROL AND PREVENTION For additional copies of this handbook, write to: Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Parasitic Diseases Mailstop F-22 4770 Buford Highway N.E. Atlanta, GA 30341-3724 CONTENTS Executive Summary Introduction 1- Coordination and Preparation 2- Epidemiologic Surveillance 3- Clinical Laboratory Testing 4- Evaluating Water Test Results Drinking Water Sources, Treatment, and Testing Environmental Sampling Methods Issuing and Rescinding a Boil Water Advisory 5- Outbreak Management Outbreak Assessment News Release Information Frequently Asked Questions Protocols for Special Audiences and Contingencies 6- Educational Information Preventing Cryptosporidiosis: A Guide for Persons With HIV and AIDS Preventing Cryptosporidiosis: A Guide for the Public Preventing Cryptosporidiosis: A Guide to Water Filters and Bottled Water 7- Recreational Water Appendix Selected Articles Key Words and Phrases Figures A-F Index Working Group on Waterborne Cryptosporidiosis (WGWC) Daniel G. Colley and Dennis D. Juranek, Coordinators, WGWC Division of Parasitic Diseases (DPD) National Center for Infectious Diseases Centers for Disease Control and Prevention Scott A. Damon, Publications Coordinator, WGWC, Centers for Disease Control and Prevention Margaret Hurd, Communications Coordinator, WGWC, Centers for Disease Control and Prevention Mary E. Bartlett, DPD Editor, Centers for Disease Control and Prevention Leslie S. Parker, Visual Information Specialist, Centers for Disease Control and Prevention Task Forces and Other Contributors: The draft materials for this handbook were developed through the work of multiple task forces and individuals whose names appear at the beginning of each chapter/section. -
Franklin Fueling Systems Submersible Pumping Systems
PRODUCT CATALOGUE FRANKLIN FUELING SYSTEMS SUBMERSIBLE PUMPING SYSTEMS 1 TABLE OF CONTENTS ABOUT US 5 Total System Solution 6 Submersible Pumping Systems 8 4" Submersible Pumps 9 Variable Speed 11 Intelligent 16 Magshell™ 19 2 Hp Fixed Speed 20 1½ Hp Fixed Speed 24 ¾ hp Fixed Speed, 50Hz 28 Advanced Protection 32 MLD+ 35 4" Submersible Pump Controllers 37 STP-SCI 37 STP-SCIIIC 39 STP-DHIB 41 STP-CBBS 43 Accessories 44 4" Spare Parts 45 6" High Capacity Pumps 48 3 and 5 hp 50Hz 50 High Capacity Line Leak Detectors 54 6" Submersible Pump Controllers 56 STP-CBB3C and STP-CBB5C 56 6" Spare Parts 57 DEF/AdBlue® 59 Pump Motor Assemblies 59 Submersible Turbine Pump Kits 60 Replacement Parts 64 CONTACT US 67 3 ABOUT US About Us Welcome to Franklin Fueling Systems, the world's leading provider of complete fuelling systems. We are comprised of the industry's most extensive lines of In addition to the industry's most comprehensive product fuelling product solutions. With us, you can get the most offering, Franklin Fueling Systems also provides: comprehensive product offering from the industry's leader in • One order for all equipment total system solutions. • Factory tested leak-tight equipment Franklin Fueling Systems provides unparalleled simplicity in • Reduced site downtimes placing one order, having one point of contact, relying on one service team and receiving one consolidated shipment. • 100% Bio-fuel compatible options A wide variety of products, a world class customer service • Effective control of your fuel stocks experience and extensive technical background create a • Ensured environmental protection complete system solution where our services, features and • Solutions to keep fuel in and water out products set us apart as the industry leader. -
National Primary Drinking Water Regulations
National Primary Drinking Water Regulations Potential health effects MCL or TT1 Common sources of contaminant in Public Health Contaminant from long-term3 exposure (mg/L)2 drinking water Goal (mg/L)2 above the MCL Nervous system or blood Added to water during sewage/ Acrylamide TT4 problems; increased risk of cancer wastewater treatment zero Eye, liver, kidney, or spleen Runoff from herbicide used on row Alachlor 0.002 problems; anemia; increased risk crops zero of cancer Erosion of natural deposits of certain 15 picocuries Alpha/photon minerals that are radioactive and per Liter Increased risk of cancer emitters may emit a form of radiation known zero (pCi/L) as alpha radiation Discharge from petroleum refineries; Increase in blood cholesterol; Antimony 0.006 fire retardants; ceramics; electronics; decrease in blood sugar 0.006 solder Skin damage or problems with Erosion of natural deposits; runoff Arsenic 0.010 circulatory systems, and may have from orchards; runoff from glass & 0 increased risk of getting cancer electronics production wastes Asbestos 7 million Increased risk of developing Decay of asbestos cement in water (fibers >10 fibers per Liter benign intestinal polyps mains; erosion of natural deposits 7 MFL micrometers) (MFL) Cardiovascular system or Runoff from herbicide used on row Atrazine 0.003 reproductive problems crops 0.003 Discharge of drilling wastes; discharge Barium 2 Increase in blood pressure from metal refineries; erosion 2 of natural deposits Anemia; decrease in blood Discharge from factories; leaching Benzene -
Module 1 Basics of Water Supply System
Module 1 BASICS OF WATER SUPPLY SYSTEM Training Module for Local Water and Sanitation Management Maharashtra Jeevan Pradhikaran (MJP) CEPT University 2012 Basics of Water Supply System- Training Module for Local Water and Sanitation Management CONTENT Introduction 3 Module A Components of Water Supply System 4 A1 Typical village/town Water Supply System 5 A2 Sources of Water 7 A3 Water Treatment 8 A4 Water Supply Mechanism 8 A5 Storage Facilities 8 A6 Water Distribution 9 A7 Types of Water Supply 10 Worksheet Section A 11 Module B Basics on Planning and Estimating Components of Water Supply 12 B1 Basic Planning Principles of Water Supply System 13 B2 Calculate Daily Domestic Need of Water 14 B3 Assess Domestic Waste Availability 14 B4 Assess Domestic Water Gap 17 B5 Estimate Components of Water Supply System 17 B6 Basics on Calculating Roof Top Rain Water Harvesting 18 Module C Basics on Water Pumping and Distribution 19 C1 Basics on Water Pumping 20 C2 Pipeline Distribution Networks 23 C3 Type of Pipe Materials 25 C4 Type of Valves for Water Flow Control 28 C5 Type of Pipe Fittings 30 C6 Type of Pipe Cutting and Assembling Tools 32 C7 Types of Line and Levelling Instruments for Laying Pipelines 34 C8 Basics About Laying of Distribution Pipelines 35 C9 Installation of Water Meters 42 Worksheet Section C 44 Module D Basics on Material Quality Check, Work Measurement and 45 Specifications in Water Supply System D1 Checklist for Quality Check of Basic Construction Materials 46 D2 Basics on Material and Item Specification and Mode of 48 Measurements Worksheet Section D 52 Module E Water Treatment and Quality Control 53 E1 Water Quality and Testing 54 E2 Water Treatment System 57 Worksheet Section E 62 References 63 1 Basics of Water Supply System- Training Module for Local Water and Sanitation Management ABBREVIATIONS CPHEEO Central Public Health and Environmental Engineering Organisation cu. -
Frontera Energy Corporation Dated: March 27, 2018
FRONTERA ENERGY CORPORATION ANNUAL INFORMATION FORM FOR THE YEAR ENDED DECEMBER 31, 2017 DATED: MARCH 27, 2018 TABLE OF CONTENTS ABBREVIATIONS AND DEFINITIONS ........................................................................................................................ 3 GLOSSARY OF TERMS .............................................................................................................................................. 3 FORWARD-LOOKING INFORMATION ....................................................................................................................... 8 GENERAL MATTERS .................................................................................................................................................10 CORPORATE STRUCTURE ......................................................................................................................................10 GENERAL DEVELOPMENT OF THE BUSINESS......................................................................................................11 DESCRIPTION OF THE BUSINESS ..........................................................................................................................18 OIL AND NATURAL GAS CONTRACTS AND PROPERTIES ...................................................................................25 INFRASTRUCTURE ASSETS ....................................................................................................................................31 RISK FACTORS .........................................................................................................................................................33 -
Pump Station Design Guidelines – Second Edition
Pump Station Design Guidelines – Second Edition Jensen Engineered Systems 825 Steneri Way Sparks, NV 89431 For design assistance call (855)468-5600 ©2012 Jensen Precast JensenEngineeredSystems.com TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................................. 3 PURPOSE OF THIS GUIDE ........................................................................................................................................... 3 OVERVIEW OF A TYPICAL JES SUBMERSIBLE LIFT STATION ....................................................................................... 3 DESIGN PROCESS ....................................................................................................................................................... 3 BASIC PUMP SELECTION ............................................................................................................................................... 5 THE SYSTEM CURVE ................................................................................................................................................... 5 STATIC LOSSES....................................................................................................................................................... 5 FRICTION LOSSES .................................................................................................................................................. 6 TOTAL DYNAMIC HEAD ........................................................................................................................................ -
A Public Health Legal Guide to Safe Drinking Water
A Public Health Legal Guide to Safe Drinking Water Prepared by Alisha Duggal, Shannon Frede, and Taylor Kasky, student attorneys in the Public Health Law Clinic at the University of Maryland Carey School of Law, under the supervision of Professors Kathleen Hoke and William Piermattei. Generous funding provided by the Partnership for Public Health Law, comprised of the American Public Health Association, Association of State and Territorial Health Officials, National Association of County & City Health Officials, and the National Association of Local Boards of Health August 2015 THE PROBLEM: DRINKING WATER CONTAMINATION Clean drinking water is essential to public health. Contaminated water is a grave health risk and, despite great progress over the past 40 years, continues to threaten U.S. communities’ health and quality of life. Our water resources still lack basic protections, making them vulnerable to pollution from fracking, farm runoff, industrial discharges and neglected water infrastructure. In the U.S., treatment and distribution of safe drinking water has all but eliminated diseases such as cholera, typhoid fever, dysentery and hepatitis A that continue to plague many parts of the world. However, despite these successes, an estimated 19.5 million Americans fall ill each year from drinking water contaminated with parasites, bacteria or viruses. In recent years, 40 percent of the nation’s community water systems violated the Safe Drinking Water Act at least once.1 Those violations ranged from failing to maintain proper paperwork to allowing carcinogens into tap water. Approximately 23 million people received drinking water from municipal systems that violated at least one health-based standard.2 In some cases, these violations can cause sickness quickly; in others, pollutants such as inorganic toxins and heavy metals can accumulate in the body for years or decades before contributing to serious health problems. -
Water Quality Monitoring
Intermediate Student Guide to Water Quality Monitoring Developed in cooperation with the Texas Stream Team. Guadalupe-Blanco River Authority flowing solutions Monitoring Manual Intermediate School Level Introduction to Student Field Guide The Guadalupe-Blanco River Authority and Texas Stream Team encourages ordinary folks to be curious about how clean the water is in their creeks, rivers, and ponds. The program teaches citizens how to spot problems in water quality. Before we get started, we should discuss the term “water quality”. When we observe a water body like a creek or river, we look at the condition of the water – does it appear clear? Does it have a smell? Is the water moving, or is it still? Answering these types of questions tell us about the quality of the water. Did you ever stop to think about water as being healthy or non-healthy? Sure you did! Just think about it…. You’ve likely seen nice clean streams or rivers…. These are examples of ‘good’ water quality. You may have also observed water that is not too appealing…or ‘poor’ water quality. When you make these simple observations, you are judging the health of the water. Ok, we’ve made it pretty clear -- when we are involved in water quality studies, we are determining the health of a body of water. This guide will assist you in learning how to identify if there are any problems in water quality. You will work with a nearby creek, river, or lake – your teacher will decide what your study area will be. You will learn how to conduct simple tests. -
Coiled-Tubing Technology (1995-1998)
Coiled-Tubing Technology (1995-1998) DEA-67 Phase I1 PROJECT TO DEVELOP AND EVALUATE COILED-TUBING AND SLIM-HOLE TECHNOLOGY MAURER ENGINEERING INC. 2916 West T.C. Jester Boulevard Houston, TX 77018-7098 Telephone: (713) 683-8227 Facsimile: (713) 683-6418 Internet: http://www.maureng.com E-Mail: [email protected] TR98-10 April 1998 The copyrighted 1998 confidential report is for the use of Participants on the Drilling Engineering Association DEA-67 PHASE II project to Develop and Evaluate Coiled-Tubing and Slim-Hole Technology and their affiliates, and is not to be disclosed to other parties. Participants and their aff~liatesare free to make copies of this report for their own use. F Coiled-Tubing Technology (1995-1998) TABLE OF CONTENTS Chapter ARTIFICIALLIFT ..............................................................1 BUCKLING ....................................................................2 CEMENTING ................................................................... 3 COILEDWBING ............................................................... 4 DRILLING ..................................................................... 5 FATIGUE ......................................................................6 FISHING ....................................................................... 7 LOGGING ..................................................................... 8 OVERVIEW ....................................................................9 PIPELINES .................................................................... 10 PRODUCTIONSTRINGS -
Standard Methods for the Examination of Water and Wastewater
Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body. -
Interpreting Your Water Test Report Kathleen Parrott, Extension Specialist, Housing Blake Ross, Extension Specialist, Biological Systems Engineering
PUBLICATION 356-489 Interpreting Your Water Test Report Kathleen Parrott, Extension Specialist, Housing Blake Ross, Extension Specialist, Biological Systems Engineering Obtaining a water analysis from a testing laboratory is to measure concentration are even smaller. In these cases, a necessary first step toward solving household water parts per billion (ppb) is used. Some contaminants have quality** problems. Before seeking testing, you may units that are specific to the test like those used forradon , have had concerns about the safety of the water used in hardness, conductance, and turbidity. Others, such as the household. Or you may have noticed objectionable pH, are expressed as an index number and not in terms of symptoms when using the water for drinking, cooking, concentration, and therefore have no units. or other household purposes. Perhaps you have routinely Even with modern techniques and expensive equipment, monitored your household water quality through periodic there are limits to which a water testing laboratory may testing and have recently noticed differing results between determine the amount of a given contaminant in water. If tests for one or more indicators. To positively identify the the amount of a substance is so small it cannot be mea- source of contamination problems, as well as to determine sured, the laboratory will usually indicate that the result is the type of corrective action to take, a properly interpreted “below detection limit” (b.d.l.) or “not detected” (n.d.), or water analysis report is essential. it may provide the actual detection limit value for a given Besides providing a laboratory report of the analysis for contaminant by using a “less than” (<) symbol. -
Atlas Smelting and Refining 5 Houston, Harris County NFA 02/16/2009 7 Years Between
Atlas Smelting and Refining 5 Houston, Harris County NFA 02/16/2009 7 years between The site is located west of interstate Hwy 45 in the Houston Heights neighborhood, located north of downtown Houston, inside loop 610. The surrounding land use is residential. A Pre-Cerclis Check List was prepared for the site in March 2002. The Pre-Cerclis Report noted that the site posed a Low Potential Hazard. The Report further noted that the site was found to be inactive, and the two buildings comprising the site had signs that said “FOR LEASE.” It also noted that the previous site activities were unknown. No file information was available from the EPA or the TCEQ regarding the site operational history. A TCEQ representative visited the site on January 22, 2009. The representative observed that the old buildings had been demolished and removed from the site; and the site was currently occupied by two-story residences. The TCEQ representative also spoke to Mr. Matt Christianson, representative of Sullivan Interests (Luxury Home Builder) during the site visit. According to Mr. Christianson, the company is a real estate developer. The company purchased the site in 2006, and the adjacent Iron and Metal site in 2004. These two businesses are located in a residential neighborhood. The company removed the existing structures and built high end homes, which the company sold to individuals. Mr. Christianson further stated that the site was inactive at the time his company purchased the site; and the two on-site buildings were housing the parts painting equipment. The Company stated to TCEQ that the company did not notice any evidence that would indicate smelting operations were taking place in the buildings that were removed.