National Recovery Plan for the Grey Headed Flying
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Living with Wildlife - Flying Foxes Fact Sheet No
LIVING WITH WILDLIFE - FLYING FOXES FACT SHEET NO. 0063 Living with wildlife - Flying Foxes What are flying foxes? flying foxes use to mark their territory and to attract females during the mating season. Flying foxes, also known as fruit bats, are winged mammals belonging to the sub-order group of megabats. Unlike the smaller insectivorous microbats, the Do flying foxes carry diseases? animal navigates using their eye sight and smell, as opposed to echolocation, Like most wildlife and pets, flying foxes may carry diseases that can affect and feed on nectar, pollen and fruit. Flying foxes forage from over 100 humans. Australian Bat Lyssavirus can be transmitted directly from flying species of native plants and may supplement this diet with introduced plants foxes to humans. The risk of contracting Lyssavirus is extremely low, with found in gardens, orchards and urban areas. transmission only possible through direct contact of saliva from an infected Of the four species of flying foxes native to mainland Australia, three reside animal with a skin penetrating bite or scratch. in the Gladstone Region. These species include the grey-headed flying fox Flying foxes are natural hosts of the Hendra virus, however, there is no (Pteropus poliocephalus), black flying fox (Pteropus alecto) and little red evidence that the virus can be transmitted directly to humans. It is believed flying fox (Pteropus scapulatus). that the virus is transmitted from flying foxes to horses through exposure to All of these species are protected under the Nature Conservation Act urine or birthing fluids. Vaccination is the most effective way of reducing the 1992 and the grey-headed flying fox is also listed as ‘vulnerable’ under the risk of the virus infecting horses. -
Daytime Behaviour of the Grey-Headed Flying Fox Pteropus Poliocephalus Temminck (Pteropodidae: Megachiroptera) at an Autumn/Winter Roost
DAYTIME BEHAVIOUR OF THE GREY-HEADED FLYING FOX PTEROPUS POLIOCEPHALUS TEMMINCK (PTEROPODIDAE: MEGACHIROPTERA) AT AN AUTUMN/WINTER ROOST K.A. CONNELL, U. MUNRO AND F.R. TORPY Connell KA, Munro U and Torpy FR, 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Australian Mammalogy 28: 7-14. The grey-headed flying fox (Pteropus poliocephalus Temminck) is a threatened large fruit bat endemic to Australia. It roosts in large colonies in rainforest patches, mangroves, open forest, riparian woodland and, as native habitat is reduced, increasingly in vegetation within urban environments. The general biology, ecology and behaviour of this bat remain largely unknown, which makes it difficult to effectively monitor, protect and manage this species. The current study provides baseline information on the daytime behaviour of P. poliocephalus in an autumn/winter roost in urban Sydney, Australia, between April and August 2003. The most common daytime behaviours expressed by the flying foxes were sleeping (most common), grooming, mating/courtship, and wing spreading (least common). Behaviours differed significantly between times of day and seasons (autumn and winter). Active behaviours (i.e., grooming, mating/courtship, wing spreading) occurred mainly in the morning, while sleeping predominated in the afternoon. Mating/courtship and wing spreading were significantly higher in April (reproductive period) than in winter (non-reproductive period). Grooming was the only behaviour that showed no significant variation between sample periods. These results provide important baseline data for future comparative studies on the behaviours of flying foxes from urban and ‘natural’ camps, and the development of management strategies for this species. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest Communities Table of Contents (click to go to page) HCCREMS Mapping ....................................................................... 3 Field Data Sheet ............................................................................. 4 Which of the following descriptions best describes your site? ................................................................ 5 Which plant community is it? .......................................................... 9 Rainforest communities of the Lower Hunter .................................. 11 Common Rainforest Species of the Lower Hunter ........................................................................ 14 A picture guide to common rainforest species of the Lower Hunter ........................................................... 17 Weeding of Rainforest Remnants ................................................... 25 Rainforest Regeneration near Black Jacks Point ............................ 27 Protection of Rainforest Remnants in the Lower Hunter & the Re-establishment of Diverse, Indigenous Plant Communities ... 28 Guidelines for a rainforest remnant planting program ..................... 31 Threatened Species ....................................................................... 36 References ..................................................................................... 43 Acknowledgements......................................................................... 43 Image Credits ................................................................................ -
An Infrageneric Classification of Syzygium (Myrtaceae)
Blumea 55, 2010: 94–99 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499303 An infrageneric classification of Syzygium (Myrtaceae) L.A. Craven1, E. Biffin 1,2 Key words Abstract An infrageneric classification of Syzygium based upon evolutionary relationships as inferred from analyses of nuclear and plastid DNA sequence data, and supported by morphological evidence, is presented. Six subgenera Acmena and seven sections are recognised. An identification key is provided and names proposed for two species newly Acmenosperma transferred to Syzygium. classification molecular systematics Published on 16 April 2010 Myrtaceae Piliocalyx Syzygium INTRODUCTION foreseeable future. Yet there are many rewarding and worthy floristic and other scientific projects that await attention and are Syzygium Gaertn. is a large genus of Myrtaceae, occurring from feasible in the shorter time frame that is a feature of the current Africa eastwards to the Hawaiian Islands and from India and research philosophies of short-sighted institutions. southern China southwards to southeastern Australia and New One impediment to undertaking studies of natural groups of Zealand. In terms of species richness, the genus is centred in species of Syzygium, as opposed to floristic studies per se, Malesia but in terms of its basic evolutionary diversity it appears has been the lack of a framework or context within which a set to be centred in the Melanesian-Australian region. Its taxonomic of species can be the focus of specialised research. Below is history has been detailed in Schmid (1972), Craven (2001) and proposed an infrageneric classification based upon phylogenies Parnell et al. (2007) and will not be further elaborated here. -
Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................ -
Phytochemical Composition and Pleotropic Pharmacological Properties of Jamun, Syzygium Cumini Skeels
Review Article Phytochemical Composition and Pleotropic Pharmacological Properties of Jamun, Syzygium Cumini Skeels Ganesh Chandra Jagetia* Department of Zoology, Mizoram University, Aizawl-796004, India Abstract Plants have been employed as medicine since time immemorial, and there has been a recent resurgence in the use of plants as medicines due to their little or no toxicity at the doses used for treatment of different ailments. This review discusses in detail the phytochemical and pharmacological activities of Jamun (Syzygium cumini), a tree belonging to family Myrtaceae, which has been credited with several medicinal properties in the traditional system of medicine, the Ayurveda. The different properties attributed to Jamun are sweet, sour, astringent, ac- rid, refrigerant, carminative, diuretic, and digestive. Research and practical use in traditional medicinal systems have found Jamun to be effective in treating leucorrhoea, gastric disorders, fever, diabetes, piles, stomachache, wounds, and dental, digestive and skin disorders. Some compounds in Jamun have antioxidant, antimicrobial, an- tiallergic, antidiabetic, antihyperlipidemic, anticancer, gastroprotective, hepatoprotective, cardioprotective and radioprotective activity. Finally, Jamun has been found to contain phytochemicals including anthroquinones, al- kaloids, catechins, flavonoids, glycosides, steroids, phenols, tannins, saponins and cardiac glycosides. The diverse activities of Jamun may be due to its abilities to scavenge free radicals, increase antioxidant status of cells by increasing glutathione, glutathione peroxidase, catalase and/or superoxide dismutase, and to attenuate lipid per- oxidation. In addition, it also suppresses the transcription of peroxisome proliferator-activated receptor, Nuclear factor kappa B, cyclooxygenase, inducible nitric oxide synthase, tumor necrosis factor alpha and other proinflam- matory cytokines, accompanied by the up-regulation of nuclear factor erythroid 2-related factor 2 transcription, which is involved in regulating the antioxidant status of the cells. -
COST COMPARISON of Melaleuca Treatment Methods by Francois B
COST COMPARISON OF Melaleuca Treatment Methods by Francois B. Laroche and Jennifer McKim Introduction Melaleuca (Melaleuca quinquenervia) is an exotic invasive plant species that was introduced to South Florida in the late 19th century Melaleuca seeds were offered for sale in Florida in 1887 (Serbesoff-King, 2003), and the tree has been distributed throughout South Florida since that time. Around 1937, during the historic rush to drain swamps in the state of Florida, seeds from the native Australian tree were disbursed over the eastern portion of South Florida’s Everglades. The tree was believed to be beneficial for drying wetlands for farming and development. In 1941, the United States Army Corps of Engineers planted M. quinquenervia on levees south of Lake Okeechobee for erosion control (Bramlage, 2000). Melaleuca was widely planted, and recommended as late as 1970, as “one of Florida’s best landscape trees” (Watkins, 1970). Melaleuca grows extremely fast in a variety of conditions. Wetlands, seasonal wetlands, and well- drained uplands offer excellent growing conditions for the tree. Melaleuca is particularly a concern for South Florida because it is highly invasive and has the ability to adapt and flourish in a variety of ecological conditions. The high production of viable seeds helps this species to establish and disperse and makes control a difficult challenge. Regardless of the method of removal, millions of viable seeds are left behind to re-establish melaleuca populations following any control initiatives. Current methods of control used for melaleuca include integrated strategies of herbicide application, limited mechanical means, and biological controls (Laroche, 1998). Control with herbicides is the most economical and most researched method. -
Nomenclature of Syzygium Gracile (Myrtaceae)
BLUMEA 48: 489 – 490 Published on 28 November 2003 doi: 10.3767/000651903X489456 NOMENCLATURE OF SYZYGIUM GRACILE (MYRTACEAE) J.F. VELDKAMP Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; e-mail: [email protected] SUMMARY Syzygium glabratum is the correct name for Syzygium gracile. Key words: Syzygium glabratum, Syzygium gracile, Syzygium ramosissimum, Myrtaceae, Malesia. Ms. Amshoff (1945) coined the combination Syzygium gracile (Korth.) Amshoff, based on Jambosa gracilis Korth. (1847). She cited an apparently earlier place where the combination would have been made: the ‘Noodflora voor Java’ (1944). However, all new taxa and combinations found there must be regarded as invalid, as the Noodflora was prepared to safeguard Backer’s manuscripts in a number of places. Hence the publication in 1945 was necessary to validate some new names and taxa. However, Amshoff also cited Myrtus glabrata Blume (1826–1827: 1083, ‘1088’), which is a later homonym of M. glabrata Sw. (1788). She was apparently not aware that Blume’s taxon was given a valid name, Jambosa glabrata, by De Candolle (1828), i.e. older than Korthals’ name. Syzygium gracile (Korth.) Amshoff is superfluous: ‘glabratum’ should have been used, as there seems to be no Syzygium glabratum then and now (IPNI, May 21, 2003). The synonymy of the taxon is: Syzygium glabratum [Blume] (DC.) Veldk., comb. nov. Myrtus glabrata Blume, Bijdr. 17 (1826–1827) 1083, non Sw. (1788). — Jambosa glabrata DC., (1828) 287. — Clavimyrtus glabrata Blume (1850) 114. — Eugenia blumeana Kuntze (1891) 239, nom. nov., non E. glabrata DC. (1828). — Lectotype of Clavimyrtus Blume, designated by Merr. -
Retinotopic Organization of the Primary Visual Cortex of Flying Foxes (Pteropus Poliocephalus and Pteropus Scapulatus)
THE JOURNAL OF COMPARATIVE NEUROLOGY 33555-72 ( 1993) Retinotopic Organization of the Primary Visual Cortex of Flying Foxes (Pteropus poliocephalus and Pteropus scapulatus) MARCELLO G.P. ROSA, LEISA M. SCHMID, LEAH A. KRUBITZER, AND JOHN D. PETTIGREW Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, St. Lucia QLD 4072, Australia ABSTRACT The representation of the visual field in the occipital cortex was studied by multiunit recordings in seven flying foxes (Pteropus spp.), anesthetized with thiopentone/NzO and immobilized with pancuronium bromide. On the basis of its visuotopic organization and architecture, the primary visual area (Vl) was distinguished from neighboring areas. Area V1 occupies the dorsal surface of the occipital pole, as well as most of the tentorial surface of the cortex, the posterior third of the mesial surface of the brain, and the upper bank of the posterior portion of the splenial sulcus. In each hemisphere, it contains a precise, visuotopically organized representation of the entire extent of the contralateral visual hemifield. The representation of the vertical meridian, together with 8-15" of ipsilateral hemifield, forms the anterior border of V1 with other visually responsive areas. The representation of the horizontal meridian runs anterolateral to posteromedial, dividing V1 so that the lower visual quadrant is represented medially, and the upper quadrant laterally. The total surface area of V1 is about 140 mm2for P. poliocephalus, and 110 mm2 for P. scapulatus. The representation of the central visual field is greatly magnified relative to that of the periphery. The cortical magnification factor decreases with increasing eccentricity, following a negative power function. -
The Philippine Flying Foxes, Acerodon Jubatus and Pteropus Vampyrus Lanensis
Journal of Mammalogy, 86(4):719- 728, 2005 DIETARY HABITS OF THE WORLD’S LARGEST BATS: THE PHILIPPINE FLYING FOXES, ACERODON JUBATUS AND PTEROPUS VAMPYRUS LANENSIS Sam C. Stier* and Tammy L. M ildenstein College of Forestry and Conservation, University of Montana, Missoula, MT 59802, USA The endemic and endangered golden- crowned flying fox (Acerodon jubatus) coroosts with the much more common and widespread giant Philippine fmit bat (Pteropus vampyrus ianensis) in lowland dipterocarp forests throughout the Philippine Islands. The number of these mixed roost- colonies and the populations of flying foxes in them have declined dramatically in the last century. We used fecal analysis, interviews of bat hunters, and personal observations to describe the dietary habits of both bat species at one of the largest mixed roosts remaining, near Subic Bay, west- central Luzon. Dietary items were deemed “important” if used consistently on a seasonal basis or throughout the year, ubiquitously throughout the population, and if they were of clear nutritional value. Of the 771 droppings examined over a 2.5 -year period (1998-2000), seeds from Ficus were predominant in the droppings of both species and met these criteria, particularly hemiepiphytic species (41% of droppings of A. jubatus) and Ficus variegata (34% of droppings of P. v. ianensis and 22% of droppings of A. jubatus). Information from bat hunter interviews expanded our knowledge of the dietary habits of both bat species, and corroborated the fecal analyses and personal observations. Results from this study suggest that A. jubatus is a forest obligate, foraging on fruits and leaves from plant species restricted to lowland, mature natural forests, particularly using a small subset of hemiepiphytic and other Ficus species throughout the year. -
Species: Melaleuca Quinquenervia
Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html SPECIES: Melaleuca quinquenervia Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY SPECIES: Melaleuca quinquenervia AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Munger, Gregory T. 2005. Melaleuca quinquenervia. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: MELQUI SYNONYMS: None NRCS PLANT CODE [98]: MEQU COMMON NAMES: melaleuca cajeput paperbark tree punktree TAXONOMY: The currently accepted scientific name for melaleuca is Melaleuca quinquenervia (Cav.) S. T. Blake (Mytraceae) [9,30,31,37,41,42,94,115,116]. Turner and others [96] provide a brief review of the Melaleuca genus in Australia, indicating that all known Melaleuca spp. (up to 250) are native, and all but 9 are endemic. Boland and others [9] suggest there are about 1 of 50 9/24/2007 4:51 PM Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html 150 described species of Melaleuca. The name melaleuca is of Greek origin, meaning "black and white", presumably referring to the white bark that is often charred black by fire (Debenham 1962 as cited in [96]. LIFE FORM: Tree Tree-shrub FEDERAL LEGAL STATUS: Noxious weed [97] OTHER STATUS: Florida Department of Environmental Quality lists melaleuca as a Class I Prohibited aquatic plant ("under no circumstances...permitted for possession, collection, transportation, cultivation, and importation...") [27].