sustainability Article Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants Hee-Kwan Shin 1,2, Jae-Min Cho 2 and Eul-Bum Lee 2,3,* 1 KEPCO (Korea Electrical Power Company), R&D Department, 211 Moonwha-ro, Najoo 58326, Korea;
[email protected] 2 Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea;
[email protected] 3 Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea * Correspondence:
[email protected]; Tel.: +82-54-279-0136 Received: 23 September 2019; Accepted: 4 November 2019; Published: 6 November 2019 Abstract: The intention of this paper is to respond to the increase in electric power demand and global environmental issues in iron and steel plants. In particular, the authors studied the characteristics of the power flow from a distributed generation (DG) system connected to the electrical power system of a steel plant. In addition, the authors carried out an economic analysis of the DG system by calculating the capital investment cost that could convert the profit of the DG into a certain profit. The research was conducted based on the power system configuration and basic data of a steel plant in operation in Korea. To analyze the unconnected DG of the power system, a transmission voltage target was set, and the voltage characteristics of 22.9 and 6.6 kV systems were analyzed. The authors analyzed the connected DG system in terms of the effect of link location, power factor, and output power by case.