Electric Power Distribution Systems Operations

Total Page:16

File Type:pdf, Size:1020Kb

Electric Power Distribution Systems Operations Naval Facilities Engineering Command 200 Stovall Street Alexandria, Virginia 22332-2300 Electric Power Distribution Systems Operations NAVFAC MO-201 April 1990 SN 0525-LP-320-1900 FOREWORD This manual on electric power distribution systems is one of a series developed to aid utility supervisory personnel at shore establishments in the performance of their duties. It includes information obtained from extensive research of current literature on the subject and preferred practices based on practical experience. The principles and procedures described are in accordance with national professional society, association, and institute codes. Additional information concerning procedures, suggestions, recommendations or modifications that will improve this manual are invited and should be submitted through appropriate channels to the Commander, Naval Facilities Engineering Command, (Attention: Code 165), 200 Stovall Street, Alexandria, VA 22332-2300. This publication has been reviewed and approved in accordance with the Secretary of the Navy Instruction 5600.16A and is certified as an official publication of the Naval Facilities Engineering Command. It cancels and supersedes Operation of Electric Power Distribution Systems, NAVFAC MO-201, November 1963, in its entirety. D. B. CAMPBELL Assistant Commander for Public Works Centers and Departments i PAGE ii INTENTIONALLY LEFT BLANK ABSTRACT Application principles and procedures for the operation of electric power distribution systems and associated major apparatus are presented. The contents include principles of power systems, cabling systems, electrical equipment, power system protection and coordination, instruments and meters, operational procedures, and electrical utilization systems. iii PAGE iv INTENTIONALLY LEFT BLANK CHANGE CONTROL SHEET Document all changes, page replacements, and pen and ink alterations posted in this manual. AMENDMENT AMENDMENT POST DATE POSTED BY NUMBER DATE (LAST NAME) V PAGE vi INTENTIONALLY LEFT BLANK CONTENTS PAGE CHAPTER 1 PRINCIPLES OF POWER SYSTEMS 1-1 1.1 Typical Power Network............................................................................ 1-1 1.2 Electric Power Generation........................................................................ 1-2 1.3 Alternating Current Power Transmission System.................................... 1-3 1.4 Primary Distribution Systems................................................................... 1-4 1.5 Secondary Distribution Systems............................................................... 1-9 1.6 Emergency and Standby Power Systems.................................................. 1-15 CHAPTER 2 POWER DISTRIBUTION CABLE SYSTEMS 2-1 2.1 Cable Specifications................................................................................. 2-1 2.2 Cable Construction................................................................................... 2-1 2.3 Cable Ratings and Selection Criteria........................................................ 2-5 2.4 Types of Cable Installations..................................................................... 2-7 2.5 Power System Applications...................................................................... 2-10 CHAPTER 3 POWER SYSTEM ELECTRICAL EQUIPMENT 3-1 3.1 Major Apparatus....................................................................................... 3-1 3.2 Transformers............................................................................................. 3-2 3.3 Voltage Regulators.................................................................................... 3-16 3.4 Switches.................................................................................................... 3-21 3.5 Circuit Breakers........................................................................................ 3-26 3.6 Automatic Circuit Reclosers..................................................................... 3-38 3.7 Power Capacitors...................................................................................... 3-44 3.8 Distribution Substation............................................................................. 3-53 CHAPTER 4 POWER SYSTEM PROTECTION AND COORDINATION 4-1 4.1 System Protection Methods...................................................................... 4-1 4.2 Short-Circuit Currents.............................................................................. 4-2 4.3 Relays....................................................................................................... 4-8 4.4 Applied Protective Relaying.................................................................... 4-15 4.5 Fuses........................................................................................................ 4-19 4.6 Low-Voltage Circuit Breakers................................................................. 4-25 4.7 System Coordination Study..................................................................... 4-28 CHAPTER 5 POWER SYSTEM INSTRUMENTS AND METERS 5-1 5.1 Instrumentation and Metering.................................................................. 5-1 5.2 Instruments............................................................................................... 5-3 5.3 Meters....................................................................................................... 5-6 vii CONTENTS (continued) PAGE CHAPTER 6 POWER SYSTEM OPERATION 6-1 6.1 Power System Structure........................................................................... 6-1 6.2 Control Center Procedures....................................................................... 6-2 6.3 Switchboards............................................................................................ 6-5 6.4 Safety and Environmental Requirements................................................. 6-8 CHAPTER 7 ELECTRICAL UTILIZATION SYSTEMS 7-1 7.1 System Voltages....................................................................................... 7-1 7.2 Equipment Nameplate Ratings and Nominal System Voltages................ 7-1 7.3 Street Lighting Systems............................................................................ 7-3 CHAPTER 8 MANAGING THE OPERATION OF ELECTRICAL DISTRIBUTION SYSTEMS 8-1 8.1 Operations Overview................................................................................. 8-1 8.2 Operations Management............................................................................ 8-1 8.3 Maintenance Management......................................................................... 8-9 8.4 System Planning Studies............................................................................ 8-14 CHAPTER 9 NEW AND EMERGING TECHNOLOGY 9-1 9.1 Supervisory Control and Data Acquisition................................................ 9-1 9.2 Control Circuits and Devices..................................................................... 9-4 9.3 Cogeneration.............................................................................................. 9-6 9.4 Variable Speed Electric Drive Systems..................................................... 9-7 APPENDIX A Operating Responsibilities and Organizational Relationships...... A-1 BIBLIOGRAPHY.................................................................................... Bibliography-1 INDEX................................................................................................................. Index-1 viii FIGURES FIGURE NO. TITLE PAGE 1-1 Typical Electric Power Generation, Transmission, and Distribution System.............. 1-1 1-2 Typical Distribution Substation Arrangements............................................................ 1-5 1-3 Typical Bus Arrangements........................................................................................... 1-7 1-4 Four Primary Feeder Arrangements............................................................................. 1-8 1-5 Conventional Simple-Radial Distribution System....................................................... 1-11 1-6 Expanded Radial Distribution System......................................................................... 1-11 1-7 Primary Selective Distribution System........................................................................ 1-12 1-8 Loop Primary-Radial Distribution System................................................................... 1-12 1-9 Secondary Selective-Radial Distribution System......................................................... 1-14 1-10 Secondary Network Distribution System..................................................................... 1-14 1-11 Secondary Banking Distribution System..................................................................... 1-16 1-12 Engine Generators (Parallel Operation)....................................................................... 1-20 1-13 Peak Load Control System........................................................................................... 1-20 1-14 Combined Utility-Generator System............................................................................ 1-20 1-15 Rotating Flywheel No Break System........................................................................... 1-24 1-16 Nonredundant UPS System.......................................................................................... 1-25 1-17 Nonredundant UPS System with Static Bypass........................................................... 1-25 1-18 Redundant UPS System..............................................................................................
Recommended publications
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Overview of Electric Power Supply Systems
    Overview of Electric Power Supply Systems Why are electric power systems studied? What are the characteristics of power systems that justify spending a whole course on them? There are many answers to each of these questions; this course will touch on a few of them. You will recall that ECE370 gave an overview of the circuit theory associated with electrical power and it is worth recalling that most power systems are three-phase and that when balanced systems are being analyzed these are usually drawn in terms of a one-line diagram, i.e. a single line is used to denote the three phases, which may or may not also have a neutral. The US Electric Power System The main aspects that describe power systems are: size, complexity and economic impact. Utility power systems cover vast territory, are subject to the whims of nature, are interconnected to each other, the quality of their commodity affects the ability of industry to produce effectively, and the price of their commodity has a significant impact on the economy of their service area. Controlling power systems requires that electricity be supplied at the correct frequency, satisfactory voltage, with its phases balanced, have low harmonic content, and with all protection systems coordinated. The foregoing has to be achieved without overloading equipment and at the lowest cost to the consumer (after the utility makes a reasonable profit.) All this is complicated by the fact that demand for electricity changes throughout the day (and week, and season) and that electricity can not be readily stored in a practical manner.
    [Show full text]
  • Replacing Property Taxes on Utility Generation with Revenues from a Carbon-Based Tax: a Minnesota Tax Shift Opportunity I
    Memo: To: Michael Noble, ME3 From: John Bailey, David Morris, ILSR (Tel: 612-379-3815) Date: 11/15/98 Re: Replacing Property Taxes on Utility Generation With Revenues from a Carbon-Based Tax: A Minnesota Tax Shift Opportunity I. Introduction Electric utilities in Minnesota pay four types of taxes: income tax, franchise fee (or gross receipts tax), sales tax, property tax.1 The total amount paid in each category is shown in Table 1. In 1995, the total came to $375 million. Table 1. Electric Utility Tax Paid in Minnesota in 1995 Property Tax MN Sales Tax MN Income Tax Franchise Fee Total NSP $152,078,365 $65,076,000 $31,709,000 $25,505,000 $274,368,365 Minnesota Power $34,706,493 $5,963,664 $3,843,817 $700,000 $45,213,974 Otter Tail $7,152,715 $4,197,450 $1,370,067 $233,643 $12,953,875 Interstate $3,670,381 $1,935,124 $573,770 $569,969 $6,749,244 Anoka Elec. Coop $3,179,055 $4,658,862 $0 $534,379 $8,372,296 Dakota Elec. Assoc. $4,742,500 $4,487,719 $0 $144,025 $9,374,244 Cooperative Power $7,095,000 $0 $0 $0 $7,095,000 United Power Assoc. $10,827,954 $0 $5,000 $0 $10,832,954 Total $223,452,463 $86,318,819 $37,501,654 $27,687,016 $374,959,952 Source: Minnesota Department of Public Service, 1996 Energy Policy and Conservation Report, December 1996 Recently, Minnesota has re-examined the utility tax structure in light of the restructuring of electricity occurring throughout the country.
    [Show full text]
  • Nuclear Power Reactors in California
    Nuclear Power Reactors in California As of mid-2012, California had one operating nuclear power plant, the Diablo Canyon Nuclear Power Plant near San Luis Obispo. Pacific Gas and Electric Company (PG&E) owns the Diablo Canyon Nuclear Power Plant, which consists of two units. Unit 1 is a 1,073 megawatt (MW) Pressurized Water Reactor (PWR) which began commercial operation in May 1985, while Unit 2 is a 1,087 MW PWR, which began commercial operation in March 1986. Diablo Canyon's operation license expires in 2024 and 2025 respectively. California currently hosts three commercial nuclear power facilities in various stages of decommissioning.1 Under all NRC operating licenses, once a nuclear plant ceases reactor operations, it must be decommissioned. Decommissioning is defined by federal regulation (10 CFR 50.2) as the safe removal of a facility from service along with the reduction of residual radioactivity to a level that permits termination of the NRC operating license. In preparation for a plant’s eventual decommissioning, all nuclear plant owners must maintain trust funds while the plants are in operation to ensure sufficient amounts will be available to decommission their facilities and manage the spent nuclear fuel.2 Spent fuel can either be reprocessed to recover usable uranium and plutonium, or it can be managed as a waste for long-term ultimate disposal. Since fuel re-processing is not commercially available in the United States, spent fuel is typically being held in temporary storage at reactor sites until a permanent long-term waste disposal option becomes available.3 In 1976, the state of California placed a moratorium on the construction and licensing of new nuclear fission reactors until the federal government implements a solution to radioactive waste disposal.
    [Show full text]
  • Toward a Sustainable Electric Utility Sector
    The Distributed Utility Concept: Toward a Sustainable Electric Utility Sector Steven Letendre, John Byrne, and Young-Doo Wang, Center for Energy and Environmental Policy, University of Delaware The U.S. electric utility sector is entering an uncertain period as pressure mounts to cut costs and minimize environmental impacts. Many analysts believe that exposing the industry to competition is the key to reducing costs. Most restructuring proposals acknowledge the need to maintain environmental quality and suggest mechanisms for assuring continued support for end-use efficiency and renewable energy in a deregulated electric utility industry. Two of the most prominent ideas are non-bypassable line charges and portfolio standards. This paper suggests another option based on the distributed utility (DU) concept in which net metering and a form of performance-based ratemaking allow distributed generation, storage, and DSM to play an important role in a new competitive electric utility sector. A DU option directly incorporates these resources into the electric system by explicitly acknowledging their value in deferring distribution equipment upgrades. INTRODUCTION electric utility industry. In our view, the DU option has been neglected in the current debate. The electric utility sector in the U.S. is on the verge of A DU strategy involves a fundamental shift in the way fundamental change as regulators, policymakers, and indus- electricity is delivered, with a move away from large-scale try officials seek a strategy for introducing competition into central generation to distributed small-scale generation and the industry. The move toward competition is driven by the storage, and targeted demand-side management. To date, belief that significant efficiency gains could be realized by the DU concept has mainly been analyzed in terms of its exposing the industry to market forces.
    [Show full text]
  • Energy Storage for Power Systems Applications: a Regional Assessment for the Northwest Power Pool (NWPP)
    PNNL-19300 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) MCW Kintner-Meyer MAElizondo PJ Balducci VV Viswanathan C Jin X Guo TB Nguyen FK Tuffner April 2010 PNNL-19300 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) M Kintner-Meyer M Elizondo P Balducci V Viswanathan C Jin X Guo T Nguyen F Tuffner April 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Funded by the Energy Storage Systems Program of the U.S. Department of Energy Dr. Imre Gyuk, Program Manager Pacific Northwest National Laboratory Richland, Washington 99352 Abstract This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. Specifically, it addresses the following questions: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, Lithium Ion (Li-ion) batteries, pumped-hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Regularization of Business Investment in the Electric Utility Industry
    This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: Regularization of Business Investment Volume Author/Editor: Universities-National Bureau Volume Publisher: Princeton University Press/NBER Volume ISBN: 0-87014-195-3 Volume URL: http://www.nber.org/books/univ54-1 Publication Date: 1954 Chapter Title: Regularization of Business Investment in the Electric Utility Industry Chapter Author: Edward W. Morehouse Chapter URL: http://www.nber.org/chapters/c3026 Chapter pages in book: (p. 213 - 282) REGULARIZATION OF BUSINESS INVESTMENT IN THE ELECTRIC UTILITY INDUSTRY' EDWARD W. MOREHOUSE GENERAL PUBLIC UTILITIES CORPORATION Introduction THIS PAPER explores the possibilities of regularizing business invest- ment by the electric utility industry. The program for the conference adds, "as means of maintaining high productive employment in a private enterprise economy." This ultimate goal of "high productive employment" as an incen- tive for regularization of investment is of less importance in the electric utility industry than in other industries, as data submitted later tend to show. Electric utilities already have achieved a rela- tively high stability of employment of operating personnel, and the impact of investment on wages and employment in electric utility operations is relatively less significant to the total economy than it is in other industries. Any contribution that electric utilities might make by stabilizing their capital expenditures would be a contribu- tion to employment stability generally, and particularly to employ- ment in the building of plant, or the manufacture of plant and equipment items, needed by electric utilities. These indirect em- ployment effects would bulk larger than the direct effects on the number of employees used in utility operations.
    [Show full text]
  • Electric Power Generation and Distribution
    ATP 3-34.45 MCRP 3-40D.17 ELECTRIC POWER GENERATION AND DISTRIBUTION JULY 2018 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. This publication supersedes TM 3-34.45/MCRP 3-40D.17, 13 August 2013. Headquarters, Department of the Army Foreword This publication has been prepared under our direction for use by our respective commands and other commands as appropriate. ROBERT F. WHITTLE, JR. ROBERT S. WALSH Brigadier General, USA Lieutenant General, USMC Commandant Deputy Commandant for U.S. Army Engineer School Combat Development and Integration This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil) and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 3-34.45 MCRP 3-40D.17 Army Techniques Publication Headquarters No. 3-34.45 Department of the Army Washington, DC, 6 July 2018 Marine Corps Reference Publication Headquarters No. 3-40D.17 Marine Corps Combat Development Command Department of the Navy Headquarters, United States Marine Corps Washington, DC, 6 July 2018 Electric Power Generation and Distribution Contents Page PREFACE.................................................................................................................... iv INTRODUCTION .......................................................................................................... v Chapter 1 ELECTRICAL POWER ............................................................................................. 1-1 Electrical Power Support to Military Operations
    [Show full text]
  • U.S. Electric Power Industry - Context and Structure
    U.S. Electric Power Industry - Context and Structure Authored by Analysis Group for Advanced Energy Economy November 2011 Industry Organization The electric industry across the United States contains Figure 1 significant variations from the perspectives of structure, A History of the U.S. Electric Industry organization, physical infrastructure characteristics, 1870 cost/price drivers, and regulatory oversight. The variation stems from a mix of geographical influences, population Thomas Edison demonstrates the electric light bulb and generator and industry make up, and the evolution of federal and 1880 state energy law and policy. Edison launches Pearl Street station, the first modern electricity generation station th In the early part of the 20 century, the electric industry 1890 evolved quickly through the creation, growth and Development begins on the Niagra Falls hydroelectric project consolidation of vertically-integrated utilities – that is, Samuel Insull suggests the utility industry is a natural companies that own and operate all of the power plants, 1900 monopoly - electric industry starts to become vertically transmission lines, and distribution systems that generate integrated and deliver power to ultimate customers. At the same Wisconsin enacts first private utility regulation and 30 states time, efficiency of electricity generation dramatically follow suit shortly thereafter 1910 improved, encouraging growth, consolidation of the industry, and expansion into more and more cities, and The Federal Power Act created the Federal Power Commission across a wider geographic area. Over time, consolidated (now FERC) utilities were granted monopoly franchises with exclusive 1920 service territories by states, in exchange for an obligation to serve customers within that territory at rates for service 1 1930 based on state-regulated, cost-of-service ratemaking.
    [Show full text]
  • Cogeneration in Louisiana 2005
    COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 This issue of Cogeneration in Louisiana, (2005) is funded 100% with Petroleum Violation Escrow Funds as part of the State Energy Conservation Program as approved by the U. S. Department of Energy and the Department of Natural Resources. This report is only available in an electronic format on the World Wide Web. Most materials produced by the Technology Assessment Division of the Louisiana Department of Natural Resources, are intended for the general use of the citizens of Louisiana, and are therefore entered into the public domain. You are free to reproduce these items with reference to the Division as the source. Some items included in our publication are copyrighted either by their originators or by contractors for the Department. To use these items it is essential you contact the copyright holders for permission before you reuse these materials TABLE OF CONTENTS COGENERATION IN LOUISIANA UPDATE (2005) Page no. LIST OF TABLES ii LIST OF FIGURES iii LIST OF EXHIBITS iv ABBREVIATIONS AND CODES v-vii BACKGROUND 1 IMPACT OF 2005 HURRICANE SEASON IN LOUISIANA 3 COGENERATION IN LOUISIANA 5 THE ENERGY POLICY ACT OF 2005 7 CONCLUSION 9 ABBREVIATIONS AND ACRONYSMS 10 GLOSSARY 11-13 SELECTED BIBLIOGRAPHY 14 EXHIBITS LIST OF TABLES PAGE Table 1 Potential Benefits of Distributed Generation 7 Table 2.
    [Show full text]
  • History of Electric Energy Systems and New Evolution - Yanoush B
    ELECTRICAL ENERGY SYSTEMS - History of Electric Energy Systems and New Evolution - Yanoush B. Danilevich, B. E. Kirichenko And N. N. Tikhodeev HISTORY OF ELECTRIC ENERGY SYSTEMS AND NEW EVOLUTION Yanoush B. Danilevich Division for Basic Researches in Electrical Power Engineering, Department of Physical and Technical Problems of Energetics, Russian Academy of Sciences, Russia B. E. Kirichenko Division for Basic Researches in Electric Power Engineering, Russian Academy of Sciences (RAS), St.-Petersburg, Russia N. N. Tikhodeev High Voltage Technology Department, HVDC Power Transmission Research Institute, St. Petersburg, Russia Keywords: Armature, electric generator, electric machine, electric power station, electrical energy end user, electrical energy production, electromagnetic processes, hydrogenerator, induction motor, inductor, interconnected power system, power station unit, power system, transmission lines, turbogenerator Contents 1. Introduction: Electrical Energy 2. History and Recent Progress of Electric Motors and Generators 3. History and Recent Progress of Electric Power Generation 3.1. Role of Electric Power Generation in the Present Fuel and Energy Complex 3.2. Electric Power Stations Today 3.3. Electric Generators for Thermal, Hydraulic and Nuclear Power Stations 4. History and Recent Progress of Electric Power Systems and Their Utilization 4.1. Early History of Electric Station Pooling 4.2. Structure of a State-of-the-art Electric Power System 4.3. Reasons for Connection of Electric Stations into Power Systems 4.4. Interconnection of Power Systems for Synchronous Operation 4.5. Asynchronous Operation of Interconnected Power Systems 4.6. International Interconnected Power Systems 5. Distributed Generation - the New Tendencies UNESCO – EOLSS Summary During the XXSAMPLE century modern power system sCHAPTERS with all necessary equipment have been created and the problems of power transmission were solved.
    [Show full text]