EPMA: Quantitative analysis WDS spectrum: Intensity is proportional to concentration

Ci I i Ii  where,  ki C i I i )()( I i )(

Ci ki  ZAF ][ i C i )(

Ci and C(i): concentration of element ‘i’ in sample and standard

Ii and I(i): measured X-ray intensities of element ‘i’ in sample and standard

ki : k-ratio of element ‘i’ ZAF : matrix corrections Matrix (ZAF) corrections

Z : atomic number correction A : absorption correction F : correction Atomic number (Z) correction

R =  CjRj Ri [ R = #X-ray photons S i generated / #photons if Z i  * there were no back-scatter] Ri * S =  C S S i j j [ S = -(1/)(dE/ds), * sample stopping power] Z, a function of E0 and composition

Duncumb-Reed-Yakowitz method:

Ri = j CjRij

Rij = R' 1 - R'2 ln(R'3 Zj+25)

-3 3 2 R'1 = 8.73x10 U - 0.1669 U + 0.9662 U + 0.4523 -3 3 -2 2 R'2 = 2.703x10 U - 5.182x10 U + 0.302 U - 0.1836 3 2 3 R'3 = (0.887 U - 3.44 U + 9.33 U - 6.43)/U

Si = j CjSij

Sij = (const) [(2Zj/Aj )/(E0+Ec)]ln[583(E0+Ec)/Jj ]

where, J (keV) = (9.76Z + 58.82Z-0.19)x10-3 Z, a function of E0 and composition Al-Cu alloy 1.2 1.2 Pure metal standards Pure metal standards 1.15 1.15 1.1 1.1 1.05 1.05  1 1 AlK

C CuK C 0.95 Cu 0.95 Cu Z 0.1 0.1 Z 0.9 0.3 0.9 0.3 0.5 0.5 0.85 0.7 0.85 0.7 0.9 0.9 0.8 0.8 10 15 20 10 15 20

E0 (keV) E0 (keV) 1.2 1.2 CuAl standard CuAl standard 1.15 2 1.15 2 1.1 1.1 1.05 1.05  1 1 AlK

C CuK C 0.95 Cu 0.95 Cu Z 0.1 0.1 Z 0.9 0.3 0.9 0.3 0.5 0.5 0.85 0.7 0.85 0.7 0.9 0.9 0.8 0.8 10 15 20 10 15 20

E0 (keV) E0 (keV) X-ray absorption

-(/)(x) -(/)( z cosec) I = I0 exp = I0 exp

I: Intensity emitted; I0: Intensity generated /: mass absorption coefficient : density; z: depth; : take-off angle  energy Mass absorption coefficient,  )( absorber

A function of energy being absorbed

 energy )( Ni Energy Ec(K- shell)  (keV) (keV) (cm 2/g) CoK 6.925 53 NiK 7.472 8.331 60 CuK 8.041 49 ZnK 8.632 311

ZnK is absorbed by Ni For compounds,  energy   energy C  compound   )()( element 'j' j j Absorption (A) correction

Absorption function, f  i )( Ai  * f  i )( f(i) = Ii(emitted)/Ii(generated) * sample A, a function of E0,  and composition

Philibert method:  1     h    i  i i  f  i   11)(     i   i 1  hi  

 i energy )( specimen where, i =  cosec  2 hi = 1.2Ai/Zi

5 1.65 1.65 i = 4.5x10 / (E0 -Ei(c) )

For compounds:

i   Chh jj j

 i  energy   i energy C  specimen   )()( element 'j' j j A, a function of E0,  and composition

ANiK in Fe-Ni alloy

1.7 1.6 1.6

CFe CFe CFe 1.6 0.1 1.5 0.1 1.5 0.1 0.3 0.3 0.3 1.5 0.5 0.5 0.5 o o 1.4 1.4 o 0.7 0.7 0.7 1.4 0.9 0.9 0.9 at 40 1.3 1.3 at 52.5 at 15.5    1.3 NiK NiK NiK A A A 1.2 1.2 1.2

1.1 1.1 1.1

1 1 1 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

E0 (keV) E0 (keV) E0 (keV) Total X-ray intensity: generated versus emitted

Generated intensity  I gen  0 zdzz )()()(

Emitted intensity   z II emit  II gen exp    z  0 )()( exp zdzz )(  where,    )( cosec Generated and emitted X-ray intensity variation with depth: AlK in Al-Cu alloy

Effect of matrix (mainly Cu) on the emitted intensity of AlK, which is highly absorbed in Cu;

 AlKα 2  )( Cu = 4837.5 cm /g (z) matrix correction

The combined atomic number and absorption corrections is the ratio of emitted intensities * in standard (I emit) to sample (I emit)

  z I emit  (z)0 (z )exp zd )(

*  *   z Iemit   z )( 0  )( exp zdz )(

  i z 0  i ( z )exp zd )( AZ ii   *  i z 0 i z )( exp zd )( (z) matrix correction 0 : the value of (z) at z=0

Rm : the depth at which (z) is

maximum (m)

Rx : the maximum depth of X-ray production (X-ray range)

ZiAi is modeled in terms of 0, Rm, Rx and the integral of the (z) function (Pouchou and Pichoir: PAP method) (z) dependence on Z and E0

 Rm and Rx • decrease with increase in atomic number, Z • increase with

beam energy, E0  (0) increases with

beam energy, E0 X-ray fluorescence A consequence of X-ray absorption when

Eabsorbed X-ray > Ec(absorber shell)

 NiK  )( Absorber Absorber EK EK Ec(K)  (Atomic No.) (keV) (keV) (keV) (cm2/g) Mn(25)* 5.895 6.492 6.537 344 Fe(26)* 6.4 7.059 7.111 380 Co(27) 6.925 7.649 7.709 53 Ni(28) 7.472 8.265 8.331 59 Cu(29) 8.041 8.907 8.98 65.5

* NiK fluoresces Mn and Fe

Element Radiation causing fluorescen ce Mn FeK, CoK, CoK, NiK, NiK, CuK, CuK Fe CoK, NiK, NiK, CuK, CuK Co NiK, CuK, CuK Ni CuK Cu none Characteristic fluorescence (F) correction

  f  f I ij : intensity of X-ray ‘i’  1   ij II i    j  fluoresced by element j Fi *  f   1    ij II i  Ii : intensity of X-ray ‘i’  j  generated by electron * sample beam

Fluorescence correction for an element includes the summation of fluoresced intensities by other elements in the compound F, a function of E0 and composition

Castaing-Reed method:

I fij /Ii = CjY0Y1Y2Y3Pij

Y0 = 0.5[(ri-1)/ri][j Ai/Aj] j : fluorescent yield

1.67 Y1 = [(Uj-1)/(Ui-1)]

j j Y2 = (/) i/(/) spec

Y3 = [ln(1+u)]/u + [ln(1+v)]/v i j u = [(/) spec/(/) spec] cosec  5 1.65 1.65 j v = 3.3x10 /[(E0 -Ec )(/) spec]

Pij=1 for K fluorescing K; 4.76 for K fluorescing L; 0.24 for L fluorescing K F, a function of E0 and composition FFeK in Fe-Ni alloy

1.1 1.1 1.1

1 1 1 o o o

0.9 0.9 0.9 at 40 CFe CFe at 52.5 at 15.5 CFe    0.1 0.1 0.1 FeK FeK FeK 0.3 F 0.3 F F 0.3 0.8 0.8 0.8 0.5 0.5 0.5 0.7 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.7 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

E0 (keV) E0 (keV) E0 (keV) 1.7 1.6 1.6 CFe CFe CFe 1.6 0.1 1.5 0.1 1.5 0.1 0.3 0.3 0.3 1.5 0.5 0.5 0.5 o o 1.4 1.4 0.7 o 0.7 0.7 1.4 0.9 0.9 1.3 1.3 0.9 at 40 at 52.5 at 15.5 1.3    NiK NiK NiK 1.2 1.2 A A A 1.2

1.1 1.1 1.1

1 1 1 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

E0 (keV) E0 (keV) E0 (keV)

ANiK in Fe-Ni alloy Matrix correction flowchart

Concentrations are calculated through an iterative procedure:

k ------ ZAF1 ------ C1 ( = k * ZAF1)

C1 ------ ZAF2 ------ C2 ( = k * ZAF2) (if C2 = C1, stop here)

C2 ------ ZAF3 ------ C3 ( = k * ZAF3) (if C3 = C2, stop here)

and so on.... MIT OpenCourseWare http://ocw.mit.edu

12.141 Electron Analysis January (IAP) 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.