Hymenoptera: Chalcidoidea) from Argentina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologica Acta, Vol.4, N°4, 2006, 409-438 |415| Ce
'geológica FOmS^Y ACTA GEOLÓGICA HISPAfilCA Geológica acta: an international earth science journal Universidad de Barcelona [email protected] ISSN (Versión impresa): 1695-6133 ESPAÑA 2006 C.C. Labandeira THE FOUR PHASES OF PLANT-ARTHROPOD ASSOCIATIONS IN DEEP TIME Geológica acta: an international earth science journal, december, año/vol. 4, número 004 Universidad de Barcelona Barcelona, España pp. 409-438 Red de Revistas Científicas de América Latina y el Caribe, España y Portugal ®re¿!alyc^ Universidad Autónoma del Estado de México http://redalyc.uaemex.mx Geológica Acta, Vol.4, N° 4, 2006, 409-438 Appendix l-IX geología acta Available online at www.geologica-acta.com The Four Phases of Plant-Arthropod Associations in Deep Time C.C. LABANDEIRA |1||2| 111 Smithsonian Institution, National Museum of Natural History P.O. Box 37012, MRC-121 Department of Paleobiology, Washington, D.C., USA 200137012. E-mail: [email protected] 121 University of Maryland, Department of Entomology College Park, Maryland, USA 20742 1 ABSTRACT I Vascular-plant hosts, their arthropod herbivores, and associated functional feeding groups are distributed spa- tiotemporally into four major herbivore expansions during the past 420 m.y. They are: (1) a Late Silurian to Late Devonian (60 m.y.) phase of myriapod and apterygote, hexapod (perhaps pterygote) herbivores on several clades of primitive vascular-plant hosts and a prototaxalean fungus; (2) a Late Mississippian to end-Permian (85 m.y.) phase of mites and apterygote and basal pterygote herbivores on pteridophyte and basal gymnospermous plant hosts; (3) a Middle Triassic to Recent (245 m.y.) phase of mites, orthopteroids (in the broadest sense) and hemipteroid and basal holometabolan herbivores on pteridophyte and gymnospermous plant hosts; and (4) a mid Early Cretaceous to Recent (115 m.y.) phase of modern-aspect orthopteroids and derived hemipteroid and holometabolous herbivores on angiospermous plant hosts. -
Los Tipos De Chalcididae, Eucharitidae, Eurytomidae, Leucospidae, Tanaostigmatidae Y Torymidae (Hymenoptera: Chalcidoidea) Depositados En El Museo De La Plata, Argentina
Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Loiácono, M. S.; Margaría, C. B.; Aquino, D. A.; Gaddi, A. L. Los tipos de Chalcididae, Eucharitidae, Eurytomidae, Leucospidae, Tanaostigmatidae y Torymidae (Hymenoptera: Chalcidoidea) depositados en el museo de La Plata, Argentina Acta Zoológica Mexicana (nueva serie), vol. 22, núm. 3, 2006, pp. 75-84 Instituto de Ecología, A.C. Xalapa, México Disponible en: http://www.redalyc.org/articulo.oa?id=57522307 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Acta Zoológica MexicanaActa Zool. (n.s.)Mex. 22(3):(n.s.) 22(3)75-84 (2006) LOS TIPOS DE CHALCIDIDAE, EUCHARITIDAE, EURYTOMIDAE, LEUCOSPIDAE, TANAOSTIGMATIDAE Y TORYMIDAE (HYMENOPTERA: CHALCIDOIDEA) DEPOSITADOS EN EL MUSEO DE LA PLATA, ARGENTINA M.S. LOIÁCONO, C.B. MARGARÍA, D.A. AQUINO y A.L. GADDI Museo de La Plata, División Entomología, Paseo del Bosque s/n, CP. 1900, La Plata, ARGENTINA [email protected]. RESUMEN Se examinaron y listaron los 183 especímenes tipo de Chalcididae (1), Eucharitidae (3), Eurytomidae (127), Leucospidae (2), Tanaostigmatidae (41) y Torymidae (9) (Hymenoptera: Chalcidoidea) depositados en las colecciones de la División Entomología del Museo de La Plata. Para cada taxón se proporciona la información de etiqueta original y en algunos casos información actualizada acerca de los materiales tipo. Estos tipos pertenecen a 34 especies de Chalcidoidea descritas por Blanchard (1); Boucek (2); Boucek et Watsham (1); Brèthes (1); De Santis (9); De Santis et Diaz (1); De Santis et Fernandes (1); LaSalle (16); Mayr (1); Subba Rao (1). -
PDF Download Wasp Ebook Free Download
WASP PDF, EPUB, EBOOK Eric Frank Russell | 192 pages | 09 May 2013 | Orion Publishing Co | 9780575129047 | English | London, United Kingdom 25 Types of Wasps and Hornets - ProGardenTips Megascolia procer , a giant solitary species from Java in the Scoliidae. This specimen's length is 77mm and its wingspan is mm. Megarhyssa macrurus , a parasitoid. The body of a female is 50mm long, with a c. Tarantula hawk wasp dragging an orange-kneed tarantula to her burrow; it has the most painful sting of any wasp. Of the dozens of extant wasp families, only the family Vespidae contains social species, primarily in the subfamilies Vespinae and Polistinae. All species of social wasps construct their nests using some form of plant fiber mostly wood pulp as the primary material, though this can be supplemented with mud, plant secretions e. Wood fibres are gathered from weathered wood, softened by chewing and mixing with saliva. The placement of nests varies from group to group; yellow jackets such as Dolichovespula media and D. Other wasps, like Agelaia multipicta and Vespula germanica , like to nest in cavities that include holes in the ground, spaces under homes, wall cavities or in lofts. While most species of wasps have nests with multiple combs, some species, such as Apoica flavissima , only have one comb. The vast majority of wasp species are solitary insects. There are some species of solitary wasp that build communal nests, each insect having its own cell and providing food for its own offspring, but these wasps do not adopt the division of labour and the complex behavioural patterns adopted by eusocial species. -
Insect Pathogens As Biological Control Agents: Back to the Future ⇑ L.A
Journal of Invertebrate Pathology 132 (2015) 1–41 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Insect pathogens as biological control agents: Back to the future ⇑ L.A. Lacey a, , D. Grzywacz b, D.I. Shapiro-Ilan c, R. Frutos d, M. Brownbridge e, M.S. Goettel f a IP Consulting International, Yakima, WA, USA b Agriculture Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK c U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, GA 31008, USA d University of Montpellier 2, UMR 5236 Centre d’Etudes des agents Pathogènes et Biotechnologies pour la Santé (CPBS), UM1-UM2-CNRS, 1919 Route de Mendes, Montpellier, France e Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, Ontario L0R 2E0, Canada f Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada1 article info abstract Article history: The development and use of entomopathogens as classical, conservation and augmentative biological Received 24 March 2015 control agents have included a number of successes and some setbacks in the past 15 years. In this forum Accepted 17 July 2015 paper we present current information on development, use and future directions of insect-specific Available online 27 July 2015 viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for con- trol of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Keywords: Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the con- Microbial control trol of lepidopteran pests. -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
Describing Species
DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3. -
Redalyc.EFFECT of BRUSHWOOD TRANSPOSITION on the LEAF
Revista Brasileira de Ciência do Solo ISSN: 0100-0683 [email protected] Sociedade Brasileira de Ciência do Solo Brasil Benetton Vergílio, Paula Cristina; Naschenveng Knoll, Fátima do Rosário; da Silva Mariano, Daniela; Maiara Dinardi, Nágila; Ueda, Marcos Yukio; Cavassan, Osmar EFFECT OF BRUSHWOOD TRANSPOSITION ON THE LEAF LITTER ARTHROPOD FAUNA IN A CERRADO AREA Revista Brasileira de Ciência do Solo, vol. 37, núm. 5, 2013, pp. 1158-1163 Sociedade Brasileira de Ciência do Solo Viçosa, Brasil Disponible en: http://www.redalyc.org/articulo.oa?id=180228849005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 1158 Paula Cristina Benetton Vergílio et al. DIVISÃO 2 - PROCESSOS E PROPRIEDADES DO SOLO Comissão 2.1 - Biologia do solo EFFECT OF BRUSHWOOD TRANSPOSITION ON THE LEAF LITTER ARTHROPOD FAUNA IN A CERRADO AREA(1) Paula Cristina Benetton Vergílio(2), Fátima do Rosário Naschenveng Knoll(3), Daniela da Silva Mariano(4), Nágila Maiara Dinardi(5), Marcos Yukio Ueda(6) & Osmar Cavassan(3) SUMMARY The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. -
Edible Insects
1.04cm spine for 208pg on 90g eco paper ISSN 0258-6150 FAO 171 FORESTRY 171 PAPER FAO FORESTRY PAPER 171 Edible insects Edible insects Future prospects for food and feed security Future prospects for food and feed security Edible insects have always been a part of human diets, but in some societies there remains a degree of disdain Edible insects: future prospects for food and feed security and disgust for their consumption. Although the majority of consumed insects are gathered in forest habitats, mass-rearing systems are being developed in many countries. Insects offer a significant opportunity to merge traditional knowledge and modern science to improve human food security worldwide. This publication describes the contribution of insects to food security and examines future prospects for raising insects at a commercial scale to improve food and feed production, diversify diets, and support livelihoods in both developing and developed countries. It shows the many traditional and potential new uses of insects for direct human consumption and the opportunities for and constraints to farming them for food and feed. It examines the body of research on issues such as insect nutrition and food safety, the use of insects as animal feed, and the processing and preservation of insects and their products. It highlights the need to develop a regulatory framework to govern the use of insects for food security. And it presents case studies and examples from around the world. Edible insects are a promising alternative to the conventional production of meat, either for direct human consumption or for indirect use as feedstock. -
Of Cryptic Diversity for Myrmecophiles: the Weaver Ant Camponotus Sp
Arboreal Ant Colonies as ‘Hot-Points’ of Cryptic Diversity for Myrmecophiles: The Weaver Ant Camponotus sp. aff. textor and Its Interaction Network with Its Associates Gabriela Pe´rez-Lachaud1, Jean-Paul Lachaud1,2* 1 Departamento Conservacio´n de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico, 2 Centre de Recherches sur la Cognition Animale, CNRS- UMR 5169, Universite´ de Toulouse UPS, Toulouse, France Abstract Introduction: Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. Materials and Methods: We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. Results: We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. -
Biological Control of Tephritid Fruit Flies in the Americas and Hawaii: a Review of the Use of Parasitoids and Predators
insects Review Biological Control of Tephritid Fruit Flies in the Americas and Hawaii: A Review of the Use of Parasitoids and Predators Flávio R. M. Garcia 1,* ,Sérgio M. Ovruski 2 , Lorena Suárez 3 , Jorge Cancino 4 and Oscar E. Liburd 5 1 Departamento de Ecologia, Instituto de Biologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010900, RS, Brazil 2 LIEMEN, División Control Biológico de Plagas, PROIMI Biotecnología, CCT NOA Sur-CONICET, Avda, Belgrano y Pje, Caseros, San Miguel de Tucumán T4001MVB, Tucumán, Argentina; [email protected] 3 Dirección de Sanidad Vegetal, Animal y Alimentos de San Juan, Av. Nazario Benavides 8000 Oeste, Rivadavia CP 5400, San Juan, Argentina; [email protected] 4 Programa Moscafrut SAGARPA-IICA, Camino a los Cacahoatales s/n, Metapa de Dominguez 30860, Chiapas, Mexico; [email protected] 5 Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611-0620, USA; oeliburd@ufl.edu * Correspondence: fl[email protected] Received: 31 August 2020; Accepted: 22 September 2020; Published: 25 September 2020 Simple Summary: Biological control has been the most commonly researched control tactic within fruit fly management programs, and parasitoids have been the main natural enemies used against pestiferous fruit fly species. In view of this fact, it is important to highlight and compile the data on parasitoids with a certain frequency, aiming to facilitate the knowledge of all the researchers. Information regarding the activities of parasitoids and predators on pestiferous fruit flies in the Americas is limited; therefore, this study aimed to compile the diversity of parasitoids and predators associated with tephritid fruit flies, as well as providing the scientific evidence about the use of parasitoids and predators as biological control agents for fruit flies im the Americas and Hawaii. -
IMLS Final Report Narrative: Project Title
IMLS Final Report Narrative: Project Title Curation of the Randall Morgan Plant-Pollinator Collection Project Partners: ● Symbiota Collections of Arthropods Network (SCAN): Dr. Neil Cobb at Northern Arizona University. Our SCAN partner helped set us up as a contributing institution to the SCAN online data repository. We received training and guidance in the use of the Symbiota platform for uploading museum specimen data. ● Randall Morgan at University of California Santa Cruz helped us with many questions about his collection as well as with identifying butterflies and moths in his collection. ● Dr. Robbin Thorp at University of California Davis, helped identify bee species in the Morgan collection ● Dr. Martin Hauser at California Dept. of Food and Agriculture, helped our graduate student sort and identify specimens in the syrphidae fly family. ● Dr. Michelle Trautwein, California Academy of Sciences, helped our graduate student sort and identify specimens in the bombyliidae fly family ● Dr. Max Klepikov took over for Randall Morgan and helped us identify all of our butterfly and moth specimens ● Dr. Maurius Wasbauer was a late volunteer add-on that helped us identify our spider wasp specimens ● Dr. Terry Griswold took over for Robbin Thorp and is still currently helping us identify species in the Megachiladae bee family. Overview: The Norris Center successfully re-housed, curated, and digitized specimens in the Randall Morgan Insect Collection. All ~72,200 specimens were re-housed in new cabinets and sorted into taxonomic groups. A final ~2,500 unlabeled specimens were individually labeled with collection metadata. Taxonomic identifications were completed for most specimens in important pollinator groups. -
Arthropod Management in Vineyards
Arthropod Management in Vineyards Noubar J. Bostanian • Charles Vincent Rufus Isaacs Editors Arthropod Management in Vineyards: Pests, Approaches, and Future Directions Editors Dr. Noubar J. Bostanian Dr. Charles Vincent Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada Horticultural Research and Horticultural Research and Development Center Development Center 430 Gouin Blvd. 430 Gouin Blvd. Saint-Jean-sur-Richelieu, QC, Canada Saint-Jean-sur-Richelieu, QC, Canada Dr. Rufus Isaacs Department of Entomology Michigan State University East Lansing, MI, USA ISBN 978-94-007-4031-0 ISBN 978-94-007-4032-7 (eBook) DOI 10.1007/978-94-007-4032-7 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012939840 © Springer Science+Business Media B.V. 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.