Novitaotesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

Novitaotesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y NovitaotesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3115, 39 pp., 13 figures December 28, 1994 The Skull of Erlicosaurus andrewsi, a Late Cretaceus "Segnosaur" (Theropoda: Therizinosauridae) from Mongolial JAMES M. CLARK,2 PERLE ALTANGEREL,3 AND MARK A. NORELL4 ABSTRACT The holotype of Erlicosaurus andrewsi Perle, drewsi includes the only well-preserved skull pres- 1981, from Late Cretaceous strata at Baynshin ently known for any taxon of Therizinosauridae. Tsav, South Gobi Aimak, Mongolia, includes an We present a detailed redescription of this skull, exceptionally well-preserved, nearly complete skull emphasizing those features bearing evidence ofits and mandible. Erlicosaurus andrewsi previously affinities with particular dinosaur groups. Cranial was considered a member ofSegnosauria Barsbold features of Erlicosaurus andrewsi are consistent and Perle, 1980, but recent work confirms that with the hypothesis that the Therizinosauridae are Therizinosaurus cheloniformis Maleev, 1954, is a members ofTheropoda, and ofthe theropod taxon member of this group; because Therizinosauridae Maniraptora (as modified to include Ornithomi- Maleev, 1954, has priority, it is the valid name mosauria) in particular. The skull of Erlicosaurus for the group. The holotype of Erlicosaurus an- andrewsi, furthermore, shares several derived fea- ' This is contribution number 6 of the Mongolian Academy of Sciences-American Museum of Natural History Paleontological Project. 2 Frick Postdoctoral Fellow, Department ofVertebrate Paleontology, American Museum ofNatural History; current address: Department of Biological Sciences, George Washington University, Washington, D.C. 20052. 3 Mongolian Museum of Natural History, Ulaan Baatar 46, Zaluchudiin Gudamz-l, Mongolia. 4Associate Curator, Department of Vertebrate Paleontology, American Museum of Natural History. Copyright ©) American Museum of Natural History 1994 ISSN 0003-0082 / Price $4.20 2 AMERICAN MUSEUM NOVITATES NO. 3115 tures with Omithomimosauria, Oviraptorosauria, Ornithischia and Prosauropoda-and find them to and Troodontidae. We review previous hypothe- be based upon weak evidence. ses of relationship for Therizinosauridae-with INTRODUCTION Beginning with the first publications on Enigmosauridae Barsbold and Perle, in Bars- segnosaurs (Segnosauridae Perle, 1979; Seg- bold, 1983), the taxonomic validity of the nosauria Barsbold and Perle, 1980), the un- latter two taxa is now ambiguous (e.g., the usual mixture of features in these fossils has name could be applied validly at the subfa- baffled paleontologists investigating their re- milial level). Russell and Dong (1993) pro- lationships. Most striking is the combination posed that the taxa formerly placed in the of an opisthopubic pelvis similar to that of Segnosauria now be placed with Therizino- dromaeosaurid and avialian theropods with saurus cheloniformis in the Therizinosauri- a hind foot that is not modified into the tri- dae, and that Alxasaurus elesitaiensis be dactyl pes typical of all theropods, and with placed with that family in the Therizinosau- cheeks and a beak as in ornithischian dino- roidea. (Russell and Dong also proposed the saurs. monotypic family Alxasauridae, but we find Hypotheses of relationships for Segnosau- such redundant taxa to be unnecessary; see ria, consequently, have involved both major De Queiroz and Gauthier, 1990.) We have clades of dinosaurs and both clades of Saur- not yet examined the specimens ofAlxasau- ischia. In his description of the first known rus elesitaiensis, but the character evidence segnosaur material, Perle (1979) suggested mustered by Russell and Dong, summarized that their affinities are with Theropoda, as in the following classification, is persuasive: did Barsbold (1979, 1983). Furthermore, Perle (1982) considered the equally enigmatic Therizinosauroidea (Maleev, 1954) theropod Therizinosaurus cheloniformis Ma- Aixasaurus elesitaiensis Russell and Dong, leev, 1954, to be related to the segnosaurs. 1993 Paul (1984) hypothesized segnosaurs to be Therizinosauridae Maleev, 1954 "relics [sic] ofthe prosauropod-ornithischian Erlicosaurus andrewsi Perle, 1981 transition," whereas relationships with Sau- Segnosaurus galbinensis Perle, 1979 ropodomorpha were posited by Gauthier Therizinosaurus cheloniformis Maleev, (1986) and Sereno (1989). These diverse hy- 1954 potheses are reflected in the decision by the Enigmosaurus mongoliensis Barsbold authors of the most recent review of segno- and Perle, 1983 saurs to consider them "Saurischia sedis mu- Nanshiungosaurus brevispinus Dong, tabilis" (Barsbold and Maryanska, 1990: 415). 1979 An important contribution to resolving the Chilantaisaurus zheziangensis Dong, problem ofsegnosaur relationships is the dis- 1979 covery ofa new, primitive segnosaur relative, Fossil remains of Therizinosauroidea are Alxasaurus elesitaiensis Russell and Dong, rare, and only a single skull is described for 1993. These authors hypothesized that A. any ofthe six named taxa (Barsbold and Mar- elesitaiensis is the sister taxon of a group yanska, 1990; Russell and Dong, 1993). For- comprising Therizinosaurus cheloniformis tunately this skull, part of the holotype of and Segnosauria, and that this group together Erlicosaurus andrewsi, is exquisitely pre- is the sister group of Troodontidae and Ovi- served and nearly complete. Although it was raptorosauria. Because the precise relation- described in detail and figured by Perle (198 1) ships between Therizinosaurus cheloniformis and Barsbold (1983), the unavailability of and the four genera ofsegnosaurs remain un- translations of these papers has limited their clear, and because the family Therizinosauri- accessibility to paleontologists unfamiliar dae Maleev, 1954, has priority over the taxa with Russian. Segnosauridae and Segnosauria (as well as An opportunity to prepare a revised de- 1 994 CLARK ET AL.: SKULL OF ERLICOSA UR US ANDRE WSI 3 scription ofthe skull ofErlicosaurus andrewsi likosaurus[sic] sp." from Iren Dabasu in In- was afforded by the visit ofPerle to the Amer- ner Mongolia, and they considered the Iren ican Museum of Natural History from Oc- Dabasu fauna coeval with that of the Bayn- tober 1992 to January 1993, as part of the shin Tsav site. A frontal from the Judith Riv- Mongolian Academy of Sciences-American er Formation of Canada first figured and de- Museum of Natural History Paleontological scribed by Sues (1978), who did not assign it Project. The skull and mandible were pho- to any particular taxon in the absence of di- tographed and videotaped, and Scanning agnostic features, was identified by Currie Electron Micrographs were taken of a man- (1987a) as "cf. Erlikosaurus[sic]." However, dibular tooth. Barsbold and Maryanska (1990) pointed out Our study of this specimen and compari- that the frontal bone ofErlicosaurus andrewsi son with other dinosaurs supports the rela- is not diagnostic. Jerzykiewicz and Russell tionship with theropods originally suggested (1991) correlated the Baynshirenskaya Svita by Perle (1979). Furthermore, several fea- faunal assemblage with the Turonian to Cam- tures of the skull corroborate the affinities of panian (Late Cretaceous) marine inverte- Therizinosauroidae within Maniraptora hy- brate stages, but there is little stratigraphic pothesized by Russell and Dong (1993). We constraint on this correlation. defer a more detailed treatment of the phy- DIAGNosIs: Because the skull described here logenetic relationships ofTherizinosauroidea is the only one known for any therizinosau- to a later date pending examination of a roid, it is unclear at what taxonomic level its broader diversity of Maniraptora. apomorphic features are diagnostic. Further- more, without a precise hypothesis of rela- Abbreviations tionship it is not possible to determine which AMNH American Museum of Natural History, characters shared with other Maniraptora are Vertebrate Paleontology. homologies and which are homoplasies di- MAE Collections of the joint Mongolian Acade- agnostic of Erlicosaurus andrewsi or a more my of Sciences-American Museum of of Natural History Paleontological Expe- inclusive clade therizinosauroids. ditions. These specimens will eventually In comparison with other nonavian coe- be deposited in the collections of the lurosaurian and maniraptoran theropods, the Mongolian Academy of Sciences. skull of Erlicosaurus andrewsi is distin- PST Paleontological and Stratigraphic Section of guished by: edentulous premaxilla with sharp, the Geological Institute, Mongolian vertical ventrolateral edge, extremely elon- Academy of Sciences. gate nares due to regression of the maxilla, antorbital fossa with well-developed over- SYSTEMATIC PALEONTOLOGY hanging lip, medial wall of antorbital fossa Erlicosaurus andrewsi Perle, 1981 extensive and imperforate, maxilla with me- dially inset dentition and few nutrient foram- HOLOTYPE: PST 100/111, a nearly com- ina on posterior part of facial process, pos- plete skull and mandible, several fragmentary terior process of jugal covering anterior cervical vertebrae, an articulated right pes, surface of quadratojugal, vomer extremely missing the proximal ends oftwo of the four elongate and extending posteriorly to meet metatarsals, and the left humerus. cultriform process, parabasisphenoid with TYPE LOCALITY, GEoLoGICAL OCCURRENCE, extremely large pneumatic spaces, external AND AGE: The holotype of Erlicosaurus an- auditory meatus restricted ventrally by lat- drewsi is
Recommended publications
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Lautenschlager 2012 Therizinosaur Brain
    Lautenschlager, S., Rayfield, E. J., Altangerel, P., & Witmer, L. M. (2012). The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE, 7(12), [e52289]. https://doi.org/10.1371/journal.pone.0052289 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0052289 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ The Endocranial Anatomy of Therizinosauria and Its Implications for Sensory and Cognitive Function Stephan Lautenschlager1*, Emily J. Rayfield1, Perle Altangerel2, Lindsay E. Zanno3,4, Lawrence M. Witmer5 1 School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 2 National University of Mongolia, Ulaanbaatar, Mongolia, 3 Nature Research Center, NC Museum of Natural Sciences, Raleigh, North Carolina, United States of America, 4 Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America, 5 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America Abstract Background: Therizinosauria is one of the most enigmatic and peculiar clades among theropod dinosaurs, exhibiting an unusual suite of characters, such as lanceolate teeth, a rostral rhamphotheca, long manual claws, and a wide, opisthopubic pelvis. This specialized anatomy has been associated with a shift in dietary preferences and an adaptation to herbivory.
    [Show full text]
  • A Troodontid Dinosaur from the Latest Cretaceous of India
    ARTICLE Received 14 Dec 2012 | Accepted 7 Mar 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2716 A troodontid dinosaur from the latest Cretaceous of India A. Goswami1,2, G.V.R. Prasad3, O. Verma4, J.J. Flynn5 & R.B.J. Benson6 Troodontid dinosaurs share a close ancestry with birds and were distributed widely across Laurasia during the Cretaceous. Hundreds of occurrences of troodontid bones, and their highly distinctive teeth, are known from North America, Europe and Asia. Thus far, however, they remain unknown from Gondwanan landmasses. Here we report the discovery of a troodontid tooth from the uppermost Cretaceous Kallamedu Formation in the Cauvery Basin of South India. This is the first Gondwanan record for troodontids, extending their geographic range by nearly 10,000 km, and representing the first confirmed non-avian tetanuran dinosaur from the Indian subcontinent. This small-bodied maniraptoran dinosaur is an unexpected and distinctly ‘Laurasian’ component of an otherwise typical ‘Gondwanan’ tetrapod assemblage, including notosuchian crocodiles, abelisauroid dinosaurs and gondwanathere mammals. This discovery raises the question of whether troodontids dispersed to India from Laurasia in the Late Cretaceous, or whether a broader Gondwanan distribution of troodontids remains to be discovered. 1 Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK. 2 Department of Earth Sciences, University College London, London WC1E 6BT, UK. 3 Department of Geology, Centre for Advanced Studies, University of Delhi, New Delhi 110 007, India. 4 Geology Discipline Group, School of Sciences, Indira Gandhi National Open University, New Delhi 110 068, India. 5 Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, New York, New York 10024, USA.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 Pp., 15 Figures May 4, 1999
    AMERICANt MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 pp., 15 figures May 4, 1999 An Oviraptorid Skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, Preserved in an Avianlike Brooding Position Over an Oviraptorid Nest JAMES M. CLARK,I MARK A. NORELL,2 AND LUIS M. CHIAPPE3 ABSTRACT The articulated postcranial skeleton of an ovi- presence of a single, ossified ventral segment in raptorid dinosaur (Theropoda, Coelurosauria) each rib as well as ossified uncinate processes from the Late Cretaceous Djadokhta Formation associated with the thoracic ribs. Remnants of of Ukhaa Tolgod, Mongolia, is preserved over- keratinous sheaths are preserved with four of the lying a nest. The eggs are similar in size, shape, manal claws, and the bony and keratinous claws and ornamentation to another egg from this lo- were as strongly curved as the manal claws of cality in which an oviraptorid embryo is pre- Archaeopteryx and the pedal claws of modern served, suggesting that the nest is of the same climbing birds. The skeleton is positioned over species as the adult skeleton overlying it and was the center of the nest, with its limbs arranged parented by the adult. The lack of a skull pre- symmetrically on either side and its arms spread cludes specific identification, but in several fea- out around the nest perimeter. This is one of four tures the specimen is more similar to Oviraptor known oviraptorid skeletons preserved on nests than to other oviraptorids. The ventral part of the of this type of egg, comprising 23.5% of the 17 thorax is exceptionally well preserved and pro- oviraptorid skeletons collected from the Dja- vides evidence for other avian features that were dokhta Formation before 1996.
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Edentulism, Beaks, and Biomechanical Innovations in the Evolution of Theropod Dinosaurs
    Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs Stephan Lautenschlagera,1, Lawrence M. Witmerb, Perle Altangerelc, and Emily J. Rayfielda aSchool of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom; bDepartment of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701; and cMongolian Museum of Natural History, National University of Mongolia, Ulaanbaatar 21, Mongolia Edited by Ophir Klein, University of California, San Francisco, CA, and accepted by the Editorial Board November 3, 2013 (received for review June 5, 2013) Maniraptoriformes, the speciose group of derived theropod dino- a prime example for the diverse skeletal modifications occurring saurs that ultimately gave rise to modern birds, display a diverse in the maniraptoriform bauplan. Their basal position among and remarkable suite of skeletal adaptations. Apart from the Maniraptora (12) makes therizinosaurians of special interest in evolution of flight, a large-scale change in dietary behavior appears terms of the evolutionary functional relevance of these features. to have been one of the main triggers for specializations in the Due to their highly unusual and peculiar skeletal morphology, bauplan of these derived theropods. Among the different skeletal therizinosaurians have been the focus of many taxonomic and pa- specializations, partial or even complete edentulism and the de- leoecological controversies since the discovery of the first speci- velopment of keratinous beaks form a recurring and persistent trend mens. Numerous discoveries in recent decades have substantiated in from the evolution of derived nonavian dinosaurs. Therizinosauria therizinosaurians as specialized, even bizarre, theropod dinosaurs is an enigmatic maniraptoriform clade, whose members display these (12–14).
    [Show full text]
  • Cranial Osteology of Beipiaosaurus Inexpectus
    第57卷 第2期 古 脊 椎 动 物 学 报 pp. 117–132 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.190115 Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria) LIAO Chun-Chi1,2,3 XU Xing1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Abstract Beipiaosaurus inexpectus, a key taxon for understanding the early evolution of therizinosaurians, has not been fully described since it was briefly reported on by Xu, Tang and Wang in 1999. Here we present a detailed description of the cranial anatomy of the holotype of this theropod dinosaur. B. inexpectus is unique in some of its cranial features such as the postorbital process of the frontal is large and its abrupt transition from the orbital rim, a long and sharp anterior process of the parietal, the elongate ventral ramus of the squamosal process of parietal, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. A number of plesiomorphic cranial features (such as relatively large dentary and less downturned degree of dentary symphysis) suggest that B. inexpectus is an early-branching Therizinosaurian, as proposed by previous studies. New information derived from our study is not only important for our understanding of the cranial anatomy of B. inexpectus but also significant to the study of the evolution of Therizinosauria.
    [Show full text]
  • Featured Article Cranial Anatomy of Erlikosaurus Andrewsi (Dinosauria, Therizinosauria): New Insights Based on Digital Reconstru
    Journal of Vertebrate Paleontology 34(6):1263–1291, November 2014 Ó 2014 by the Society of Vertebrate Paleontology FEATURED ARTICLE CRANIAL ANATOMY OF ERLIKOSAURUS ANDREWSI (DINOSAURIA, THERIZINOSAURIA): NEW INSIGHTS BASED ON DIGITAL RECONSTRUCTION STEPHAN LAUTENSCHLAGER,*,1 LAWRENCE M. WITMER,2 PERLE ALTANGEREL,3 LINDSAY E. ZANNO,4,5 and EMILY J. RAYFIELD1 1School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K., [email protected]; 2Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, U.S.A.; 3National University of Mongolia, Ulaanbaatar, Mongolia; 4Nature Research Center, NC Museum of Natural Sciences, Raleigh, North Carolina 27695, U.S.A.; 5Department of Biology, North Carolina State University, Raleigh, North Carolina 27601, U.S.A. ABSTRACT—The skull of Erlikosaurus andrewsi from the Upper Cretaceous Baishin Tsav locality of Mongolia represents the only known three-dimensionally preserved and nearly complete skull of a therizinosaurian. Computed tomographic (CT) scanning of the original specimen and three-dimensional visualization techniques allow the cranial skeleton to be digitally prepared, disarticulated, and restored. Here, we present a detailed description of the restored skull morphology and the individual cranial elements, including visualization of the internal neurovascular and pneumatic structures. Information gained from this study is used in a revised and emended diagnosis for E. andrewsi. A reappraisal of the evolutionary and functional changes in the cranial skeleton as provided by this study supports prior proposals that a keratinous sheath or rhamphotheca was developed early in the evolution of Therizinosauria. Paralleled by the reduction of functional and replacement teeth, this development indicates a shift in the manner of food processing/procurement at the tip of the snout.
    [Show full text]
  • A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
    www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats.
    [Show full text]