To Split Or Not to Split: an Opinion on Dividing the Genus Burkholderia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Microbial Transformations of Organic Chemicals in Produced Fluid From
Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem. -
Correlation Between the Oral Microbiome and Brain Resting State Connectivity in Smokers
bioRxiv preprint doi: https://doi.org/10.1101/444612; this version posted October 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Correlation between the oral microbiome and brain resting state connectivity in smokers Dongdong Lin1, Kent Hutchison2, Salvador Portillo3, Victor Vegara1, Jarod Ellingson2, Jingyu Liu1,3, Amanda Carroll-Portillo3,* ,Vince D. Calhoun1,3,* 1The Mind Research Network, Albuquerque, New Mexico, 87106 2University of Colorado Boulder, Boulder, CO 3University of New Mexico, Department of Electrical and Computer Engineering, Albuquerque, New Mexico, 87106 * authors contributed equally to the work. Abstract Recent studies have shown a critical role for the gastrointestinal microbiome in brain and behavior via a complex gut–microbiome–brain axis, however, the influence of the oral microbiome in neurological processes is much less studied, especially in response to the stimuli in the oral microenvironment such as smoking. Additionally, given the complex structural and functional networks in brain system, our knowledge about the relationship between microbiome and brain functions on specific brain circuits is still very limited. In this pilot work, we leverage next generation microbial sequencing with functional MRI techniques to enable the delineation of microbiome-brain network links as well as their relations to cigarette smoking. Thirty smokers and 30 age- and sex- matched non-smokers were recruited for measuring both microbial community and brain functional networks. Statistical analyses were performed to demonstrate the influence of smoking on: the taxonomy and abundance of the constituents within the oral microbial community, brain functional network connectivity, and associations between microbial shifts and the brain signaling network. -
Exploring the Cultivable Ectocarpus Microbiome
fmicb-08-02456 December 11, 2017 Time: 11:18 # 1 ORIGINAL RESEARCH published: 11 December 2017 doi: 10.3389/fmicb.2017.02456 Exploring the Cultivable Ectocarpus Microbiome Hetty KleinJan1*, Christian Jeanthon2,3, Catherine Boyen1 and Simon M. Dittami1* 1 Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France, 2 CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France, 3 Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Edited by: Ectocarpus-associated bacteria is the first step toward the development of a model Tilmann Harder, system for in vitro functional studies of brown macroalgal–bacterial interactions -
Bacterial Diversity and Functional Analysis of Severe Early Childhood
www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health. -
Metagenomic Insights Into Microbial Metabolisms of a Sulfur-Influenced
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929786; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Metagenomic Insights into Microbial Metabolisms of a Sulfur- 2 Influenced Glacial Ecosystem 3 4 Christopher B. Trivedi1,4, Blake W. Stamps1, Graham E. Lau2, Stephen E. Grasby3, Alexis S. 5 Templeton2, John R. Spear1,* 6 7 1Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 8 80401 USA 9 2Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, 80309 USA 10 3Geological Survey of Canada-Calgary, Calgary, AB, T2L2A7 Canada 11 4GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, 12 Brandenburg 14473 Germany 13 *Corresponding author: 14 John R. Spear 15 Colorado School of Mines 16 Department of Civil and Environmental Engineering 17 1500 Illinois Street 18 Golden, Colorado 80401 19 [email protected] 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929786; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Running Title: 25 Metagenomics of a Sulfur-Influenced Glacial Ecosystem 26 27 Abstract 28 Biological sulfur cycling in polar, low-temperature ecosystems is an understudied 29 phenomenon in part due to difficulty of access and the ephemeral nature of such environments. 30 One such environment where sulfur cycling plays an important role in microbial metabolisms is 31 located at Borup Fiord Pass (BFP) in the Canadian High Arctic. -
Microbiomes in Supragingival Bio Lms and Saliva of Adolescent Patients
Microbiomes in Supragingival Biolms and Saliva of Adolescent Patients with Induced and Naturally Occurring Gingivitis Relative to Gingival Health Roland Wirth Szegedi Tudomanyegyetem Gergely Maróti Szegedi Biológiai Központ Lídia Lipták Szegedi Tudomanyegyetem Mónika Mester Szegedi Tudomanyegyetem Alaa Al Ayoubi Szegedi Tudomanyegyetem Bernadett Pap Magyar Tudomanyos Akademia Szegedi Biologiai Kozpont Melinda Madléna Szegedi Tudomanyegyetem Janos Minarovits Szegedi Tudomanyegyetem Kornél L. Kovács ( [email protected] ) Szegedi Tudomanyegyetem Biologia Intezet https://orcid.org/0000-0002-3926-0497 Research Keywords: Gingivitis, Microbiomes, gingival health, saliva Posted Date: August 6th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-45630/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background: Comparison of the microbiomes in supragingival biolm and saliva samples collected from juvenile patients developing induced or spontaneous gingivitis with healthy controls. Results: 36 supragingival biolm samples from 9 adolescent gingivitis patients wearing orthodontic appliances (induced gingivitis), 40 supragingival plaques from 10 patients having spontaneous gingivitis, and 36 control samples from 9 individuals without gingivitis in the same age group were analyzed by 16S rRNA gene amplicon sequencing. Salivary microbiomes of the same persons were characterized by shotgun metagenome sequencing to compare the sessile, i.e. biolm immobilized communities with planktonic microbiota. The amplicon and whole genome data sets were scrutinized using bioinformatics workows designed to minimize systemic biases. RDP and RefSeq reference databases were compared in the identication of microbiome members. The composition and diversity of bacterial communities did not differ extensively between the two groups of gingivitis patients and controls. -
Type of the Paper (Article
Supplementary Materials S1 Clinical details recorded, Sampling, DNA Extraction of Microbial DNA, 16S rRNA gene sequencing, Bioinformatic pipeline, Quantitative Polymerase Chain Reaction Clinical details recorded In addition to the microbial specimen, the following clinical features were also recorded for each patient: age, gender, infection type (primary or secondary, meaning initial or revision treatment), pain, tenderness to percussion, sinus tract and size of the periapical radiolucency, to determine the correlation between these features and microbial findings (Table 1). Prevalence of all clinical signs and symptoms (except periapical lesion size) were recorded on a binary scale [0 = absent, 1 = present], while the size of the radiolucency was measured in millimetres by two endodontic specialists on two- dimensional periapical radiographs (Planmeca Romexis, Coventry, UK). Sampling After anaesthesia, the tooth to be treated was isolated with a rubber dam (UnoDent, Essex, UK), and field decontamination was carried out before and after access opening, according to an established protocol, and shown to eliminate contaminating DNA (Data not shown). An access cavity was cut with a sterile bur under sterile saline irrigation (0.9% NaCl, Mölnlycke Health Care, Göteborg, Sweden), with contamination control samples taken. Root canal patency was assessed with a sterile K-file (Dentsply-Sirona, Ballaigues, Switzerland). For non-culture-based analysis, clinical samples were collected by inserting two paper points size 15 (Dentsply Sirona, USA) into the root canal. Each paper point was retained in the canal for 1 min with careful agitation, then was transferred to −80ºC storage immediately before further analysis. Cases of secondary endodontic treatment were sampled using the same protocol, with the exception that specimens were collected after removal of the coronal gutta-percha with Gates Glidden drills (Dentsply-Sirona, Switzerland). -
Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas
GBE Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas Joa˜oM.P.Alves1,3,*, Myrna G. Serrano1,Fla´viaMaiadaSilva2, Logan J. Voegtly1, Andrey V. Matveyev1, Marta M.G. Teixeira2, Erney P. Camargo2, and Gregory A. Buck1 1Department of Microbiology and Immunology and the Center for the Study of Biological Complexity, Virginia Commonwealth University 2Department of Parasitology, ICB, University of Sa˜o Paulo, Sa˜oPaulo,Brazil 3Present address: Sa˜o Paulo, Brazil *Corresponding author: E-mail: [email protected]. Accepted: January 18, 2013 Data deposition: Finished genome sequences and annotations are available from GenBank under accession numbers CP003803, CP003804, CP003805, CP003806, and CP003807. Supplementary table S1, Supplementary Material online, also contains accession numbers to sequences used in the phylogenetic analyses. Abstract It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supple- ment the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. -
Limnobacter Spp. As Newly Detected Phenol-Degraders Among Baltic Sea Surface Water Bacteria Characterised by Comparative Analysi
Systematic and Applied Microbiology 36 (2013) 525–532 Contents lists available at ScienceDirect Systematic and Applied Microbiology jo urnal homepage: www.elsevier.de/syapm Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes a,∗ a a a b Eve Vedler , Eeva Heinaru , Jekaterina Jutkina , Signe Viggor , Triinu Koressaar , b a Maido Remm , Ain Heinaru a Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia b Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia a r t i c l e i n f o a b s t r a c t Article history: A set of phenol-degrading strains of a collection of bacteria isolated from Baltic Sea surface water was Received 3 April 2013 screened for the presence of two key catabolic genes coding for phenol hydroxylases and catechol 2,3- Received in revised form 10 July 2013 dioxygenases. The multicomponent phenol hydroxylase (LmPH) gene was detected in 70 out of 92 Accepted 17 July 2013 + strains studied, and 41 strains among these LmPH phenol-degraders were found to exhibit catechol 2,3-dioxygenase (C23O) activity. Comparative phylogenetic analyses of LmPH and C23O sequences from Keywords: 56 representative strains were performed. The studied strains were mostly affiliated to the genera Pseu- Phenol-degrading bacteria domonas and Acinetobacter. However, the study also widened the range of phenol-degraders by including Catabolic genes the genus Limnobacter. Furthermore, using a next generation sequencing approach, the LmPH genes of Phylogenetic analysis Limnobacter Limnobacter strains were found to be the most prevalent ones in the microbial community of the Baltic Sea surface water. -
Dysbiosis and Ecotypes of the Salivary Microbiome Associated with Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles
fmicb-09-01136 May 28, 2018 Time: 15:53 # 1 ORIGINAL RESEARCH published: 30 May 2018 doi: 10.3389/fmicb.2018.01136 Dysbiosis and Ecotypes of the Salivary Microbiome Associated With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles Zhe Xun1, Qian Zhang2,3, Tao Xu1*, Ning Chen4* and Feng Chen2,3* 1 Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China, 2 Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China, 3 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China, 4 Department Edited by: of Gastroenterology, Peking University People’s Hospital, Beijing, China Steve Lindemann, Purdue University, United States Reviewed by: Inflammatory bowel diseases (IBDs) are chronic, idiopathic, relapsing disorders of Christian T. K.-H. Stadtlander unclear etiology affecting millions of people worldwide. Aberrant interactions between Independent Researcher, St. Paul, MN, United States the human microbiota and immune system in genetically susceptible populations Gena D. Tribble, underlie IBD pathogenesis. Despite extensive studies examining the involvement of University of Texas Health Science the gut microbiota in IBD using culture-independent techniques, information is lacking Center at Houston, United States regarding other human microbiome components relevant to IBD. Since accumulated *Correspondence: Feng Chen knowledge has underscored the role of the oral microbiota in various systemic diseases, [email protected] we hypothesized that dissonant oral microbial structure, composition, and function, and Ning Chen [email protected] different community ecotypes are associated with IBD; and we explored potentially Tao Xu available oral indicators for predicting diseases. -
Bacteria in Ballast Water: the Shipping Industry’S
BACTERIA IN BALLAST WATER: THE SHIPPING INDUSTRY’S CONTRIBUTIONS TO THE TRANSPORT AND DISTRIBUTION OF MICROBIAL SPECIES IN TEXAS A Thesis by ELIZABETH B. NEYLAND Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Biology BACTERIA IN BALLAST WATER: THE SHIPPING INDUSTRY’S CONTRIBUTIONS TO THE TRANSPORT AND DISTRIBUTION OF MICROBIAL SPECIES IN TEXAS A Thesis by ELIZABETH B. NEYLAND Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Robin Brinkmeyer Susan Golden Committee Members, Michael Benedik Antonietta Quigg Head of Department, Uel J. McMahan August 2009 Major Subject: Biology iii ABSTRACT Bacteria in Ballast Water: The Shipping Industry’s Contributions to the Transport and Distribution of Microbial Species in Texas. (August 2009) Elizabeth B. Neyland, B.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. Robin Brinkmeyer Dr. Susan Golden The transportation of organisms in the ballast water of cargo ships has been recognized as a source of invasive species despite current control measures. Pathogenic bacteria in the ballast tank have been studied but the total diversity of the ballast tank bacterial community has not been examined. This study is the first to characterize the total bacterial community within a ballast tank by constructing a clone library from a ballast water sample from a cargo ship in the Port of Houston, amplified ribosomal rDNA restriction analysis (ARDRA) and phylogenetic analysis. -
Microbiota of Dominant Atlantic Copepods: Pleuromamma Sp. As a Host to a Betaproteobacterial Symbiont
UNIVERSITY OF SOUTHAMPTON Faculty Of Natural And Environmental Sciences School of Ocean and Earth Science Microbiota of dominant Atlantic copepods: Pleuromamma sp. as a host to a betaproteobacterial symbiont by Sara Joan Javornik Cregeen Thesis for the degree of Doctor of Philosophy March 2016 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Thesis for the degree of Doctor of Philosophy MICROBIOTA OF DOMINANT ATLANTIC COPEPODS: PLEUROMAMMA SP. AS A HOST TO A BETAPROTEOBACTERIAL SYMBIONT by Sara Joan Javornik Cregeen Copepods are the most abundant zooplankton group in the ocean and play a pivotal role as grazers of microorganisms and prey for larger animals. Furthermore, they are major contributors to the pool of dissolved organic material in the pelagic and therefore play an important role in the microbial loop. Although biology of copepods has been under investigation for more than a century, few studies have looked at the relationship between copepods and their associated bacteria. Could copepods be perceived as distinctive microbial hotspots in nutrient poor pelagic environment? The microbiota of three Pleuromamma species, an abundant genus of copepods that migrate vertically from surface waters to several hundred meters water depth and back on a daily basis was investigated using various molecular and morphological techniques. The focus was on the differences in the bacterial community composition of these copepods along the Atlantic Meridional Transect, which traverses major oceanic biomes such as the subtropical gyres and the equatorial convergence region. Additionally, the community structure and stable isotope composition of the likely microplankton food source as well as the Pleuromamma copepods was assessed along the same cruise transect.