ECON 200. Introduction to Microeconomics Homework 5 Part I

Total Page:16

File Type:pdf, Size:1020Kb

ECON 200. Introduction to Microeconomics Homework 5 Part I ECON 200. Introduction to Microeconomics Homework 5 Part I Name:________________________________________ [Multiple Choice] 1. Diminishing marginal product explains why, as a firm’s output increases, (d) a. the production function and total-cost curve both get steeper. b. the production function and total-cost curve both get flatter c. the production function gets steeper, while the total-cost curve gets flatter. d. the production function gets flatter, while the total-cost curve gets steeper. 2. A firm is producing 1,000 units at a total cost of $5,000. If it were to increase production to 1,001 units, its total cost would rise to $5,008. What does this information tell you about the firm? (d) a. Marginal cost is $5, and average variable cost is $8. b. Marginal cost is $8, and average variable cost is $5. c. Marginal cost is $5, and average total cost is $8. d. Marginal cost is $8, and average total cost is $5. 3. A firm is producing 20 units with an average total cost of $25 and marginal cost of $15. If it were to increase production to 21 units, which of the following must occur? (c) a. Marginal cost would decrease. b. Marginal cost would increase. c. Average total cost would decrease. d. Average total cost would increase 4. The government imposes a $1,000 per year license fee on all pizza restaurants. Which cost curves shift as a result? (b) a. average total cost and marginal cost b. average total cost and average fixed cost c. average variable cost and marginal cost d. average variable cost and average fixed cost 5. If a higher level of production allows workers to specialize in particular tasks, a firm will likely exhibit ________ of scale and ________ average total cost. (a) a. economies, falling b. economies, rising c. diseconomies, falling d. diseconomies, rising 6. A perfectly competitive firm (c) a. chooses its price to maximize profits. b. sets its price to undercut other firms selling similar products. c. takes its price as given by market conditions. d. picks the price that yields the largest market share. 7. A competitive firm maximizes profit by choosing the quantity at which (b) a. average total cost is at its minimum. b. marginal cost equals the price. c. average total cost equals the price. d. marginal cost equals average total cost. 8. If profit-maximizing, competitive firm is producing a quantity at which marginal cost is between average variable cost and average total cost, it will (a) a. keep producing in the short run but exit the market in the long run. b. shut down in the short run but return to production in the long run. c. shut down in the short run and exit the market in the long run. d. keep producing both in the short run and in the long run. 9. In the long-run equilibrium of a competitive market with identical firms, what is the relationship between price P, marginal cost MC, and average total cost ATC? (d) a. P > MC and P > ATC. b. P > MC and P = ATC. c. P = MC and P > ATC. d. P = MC and P = ATC. [Short Answer] 1. Draw the marginal-cost and average-total-cost curves for a typical firm. Explain why the curves have the shapes that they do and why they cross where they do. The figure shows the marginal-cost curve and the average-total-cost curve for a typical firm. There are three main features of these curves: (1) marginal cost is U-shaped but rises sharply as output increases; (2) average total cost is U-shaped; and (3) whenever marginal cost is less than average total cost, average total cost is declining; whenever marginal cost is greater than average total cost, average total cost is rising. Marginal cost is increasing for output greater than a certain quantity because of diminishing returns. The average-total-cost curve is downward-sloping initially because the firm is able to spread out fixed costs over additional units. The average-total-cost curve is increasing beyond some output level because as quantity increases, the demand for important variable inputs increases; therefore, the cost of these inputs increases. The marginal-cost and average-total-cost curves intersect at the minimum of average total cost; that quantity is the efficient scale. 2. Define economies of scale and explain why they might arise. Define diseconomies of scale and explain why they might arise. Economies of scale exist when long-run average total cost decreases as the quantity of output increases, which occurs because of specialization among workers. Diseconomies of scale exist when long-run average total cost rises as the quantity of output increases, which occurs because of the coordination problems inherent in a large organization 3. There are many types of costs: opportunity cost, total cost, fixed cost, variable cost, average total cost, and marginal cost. Fill in the type of cost that best completes each sentence: a. What you give up for taking some action is called the ______. opportunity cost b. _____ is falling when marginal cost is below it and rising when marginal cost is above it. average total cost c. A cost that does not depend on the quantity produced is a(n) ______. fixed cost d. In the ice-cream industry in the short run, ______ includes the cost of cream and sugar but not the cost of the factory. variable cost e. Profits equal total revenue minus ______. total cost f. The cost of producing an extra unit of output is the ______. marginal cost 4. Nimbus, Inc., makes brooms and then sells them door-to-door. Here is the relationship between the number of workers and Nimbus’s output in a given day: Workers Output Marginal Total Average Marginal Product cost Total cost cost 0 0 $200 1 20 20 300 $15.00 $5.00 2 50 30 400 8.00 3.33 3 90 40 500 5.56 2.50 4 120 30 600 5.00 3.33 5 140 20 700 5.00 5.00 6 150 10 800 5.33 10.00 7 155 5 900 5.81 20.00 a. Fill in the column of marginal products. What pattern do you see? How might you explain it? Marginal product rises at first, then declines because of diminishing marginal product. b. A worker costs $100 a day, and the firm has fixed costs of $200. Use this information to fill in the column for total cost. c. Fill in the column for average total cost. (Recall that ATC=TC/Q.) What pattern do you see? Average total cost is U-shaped. When quantity is low, average total cost declines as quantity rises; when quantity is high, average total cost rises as quantity rises d. Now fill in the column for marginal cost. (Recall that MC=dTC/dQ.) What pattern do you see? Marginal cost is also U-shaped, but rises steeply as output increases. This is due to diminishing marginal product e. Compare the column for marginal product and the column for marginal cost. Explain the relationship. When marginal product is rising, marginal cost is falling, and vice versa f. Compare the column for average total cost and the column for marginal cost. Explain the relationship. When marginal cost is less than average total cost, average total cost is falling; the cost of the last unit produced pulls the average down. When marginal cost is greater than average total cost, average total cost is rising; the cost of the last unit produced pushes the average up 5. You are the chief financial officer for a firm that sells digital music players. Your firm has the following average-total-cost schedule: Quantity Average Total Cost 600 players $300 601 301 Your current level of production is 600 devices, all of which have been sold. Someone calls, desperate to buy one of your music players. The caller offers you $550 for it. Should you accept the offer? Why or why not? At an output level of 600 players, total cost is $180,000 (600 × $300). The total cost of producing 601 players is $180,901. Therefore, you should not accept the offer of $550, because the marginal cost of the 601st player is $901 6. Consider the following cost information for a pizzeria: Quantity TotalCost Variable Cost 0 dozen pizzas $300 $0 1 350 50 2 390 90 3 420 120 4 450 150 5 490 190 6 540 240 a. What is the pizzeria’s fixed cost? The fixed cost is $300, because fixed cost equals total cost minus variable cost. At an output of zero, the only costs are fixed cost b. Construct a table in which you calculate the marginal cost per dozen pizzas using the information on total cost. Also, calculate the marginal cost per dozen pizzas using the information on variable cost. What is the relationship between these sets of numbers? Comment Quantity Total Variable Marginal Cost Marginal Cost Cost Cost (using total cost) (using variable cost) 0 $300 $0 --- --- 1 350 50 $50 $50 2 390 90 40 40 3 420 120 30 30 4 450 150 30 30 5 490 190 40 40 6 540 240 50 50 Marginal cost equals the change in total cost for each additional unit of output. It is also equal to the change in variable cost for each additional unit of output. This relationship occurs because total cost equals the sum of variable cost and fixed cost and fixed cost does not change as the quantity changes.
Recommended publications
  • Integrated Regional Econometric and Input-Output Modeling
    Integrated Regional Econometric and Input-Output Modeling Sergio J. Rey12 Department of Geography San Diego State University San Diego, CA 92182 [email protected] January 1999 1Part of this research was supported by funding from the San Diego State Uni- versity Foundation Defense Conversion Center, which is gratefully acknowledged. 2This paper is dedicated to the memory of Philip R. Israilevich. Abstract Recent research on integrated econometric+input-output modeling for re- gional economies is reviewed. The motivations for and the alternative method- ological approaches to this type of analysis are examined. Particular atten- tion is given to the issues arising from multiregional linkages and spatial effects in the implementation of these frameworks at the sub-national scale. The linkages between integrated modeling and spatial econometrics are out- lined. Directions for future research on integrated econometric and input- output modeling are identified. Key Words: Regional, integrated, econometric, input-output, multire- gional. Integrated Regional Econometric+Input-Output Modeling 1 1 Introduction Since the inception of the field of regional science some forty years ago, the synthesis of different methodological approaches to the study of a region has been a perennial theme. In his original “Channels of Synthesis” Isard conceptualized a number of ways in which different regional analysis tools and techniques relating to particular subsystems of regions could be inte- grated to achieve a comprehensive modeling framework (Isard et al., 1960). As the field of regional science has developed, the term integrated model has been used in a variety of ways. For some scholars, integrated denotes a model that considers more than a single substantive process in a regional context.
    [Show full text]
  • 2015: What Is Made in America?
    U.S. Department of Commerce Economics and2015: Statistics What is Made Administration in America? Office of the Chief Economist 2015: What is Made in America? In October 2014, we issued a report titled “What is Made in America?” which provided several estimates of the domestic share of the value of U.S. gross output of manufactured goods in 2012. In response to numerous requests for more current estimates, we have updated the report to provide 2015 data. We have also revised the report to clarify the methodological discussion. The original report is available at: www.esa.gov/sites/default/files/whatismadeinamerica_0.pdf. More detailed industry By profiles can be found at: www.esa.gov/Reports/what-made-america. Jessica R. Nicholson Executive Summary Accurately determining how much of our economy’s total manufacturing production is American-made can be a daunting task. However, data from the Commerce Department’s Bureau of Economic Analysis (BEA) can help shed light on what percentage of the manufacturing sector’s gross output ESA Issue Brief is considered domestic. This report works through several estimates of #01-17 how to measure the domestic content of the U.S. gross output of manufactured goods, starting from the most basic estimates and working up to the more complex estimate, domestic content. Gross output is defined as the value of intermediate goods and services used in production plus the industry’s value added. The value of domestic content, or what is “made in America,” excludes from gross output the value of all foreign-sourced inputs used throughout the supply March 28, 2017 chains of U.S.
    [Show full text]
  • Economics 2 Professor Christina Romer Spring 2019 Professor David Romer LECTURE 16 TECHNOLOGICAL CHANGE and ECONOMIC GROWTH Ma
    Economics 2 Professor Christina Romer Spring 2019 Professor David Romer LECTURE 16 TECHNOLOGICAL CHANGE AND ECONOMIC GROWTH March 19, 2019 I. OVERVIEW A. Two central topics of macroeconomics B. The key determinants of potential output C. The enormous variation in potential output per person across countries and over time D. Discussion of the paper by William Nordhaus II. THE AGGREGATE PRODUCTION FUNCTION A. Decomposition of Y*/POP into normal average labor productivity (Y*/N*) and the normal employment-to-population ratio (N*/POP) B. Determinants of average labor productivity: capital per worker and technology C. What we include in “capital” and “technology” III. EXPLAINING THE VARIATION IN THE LEVEL OF Y*/POP ACROSS COUNTRIES A. Limited contribution of N*/POP B. Crucial role of normal capital per worker (K*/N*) C. Crucial role of technology—especially institutions IV. DETERMINANTS OF ECONOMIC GROWTH A. Limited contribution of N*/POP B. Important, but limited contribution of K*/N* C. Crucial role of technological change V. HISTORICAL EVIDENCE OF TECHNOLOGICAL CHANGE A. New production techniques B. New goods C. Better institutions VI. SOURCES OF TECHNOLOGICAL PROGRESS A. Supply and demand diagram for invention B. Factors that could shift the demand and supply curves C. Does the market produce the efficient amount of invention? D. Policies to encourage technological progress Economics 2 Christina Romer Spring 2019 David Romer LECTURE 16 Technological Change and Economic Growth March 19, 2019 Announcements • Problem Set 4 is being handed out. • It is due at the beginning of lecture on Tuesday, April 2. • The ground rules are the same as on previous problem sets.
    [Show full text]
  • 1 Objective 2 Examples of Cost Functions
    BEE1020 { Basic Mathematical Economics Dieter Balkenborg Week 8, Lecture Thursday 28.11.02 Department of Economics Increasing and convex functions University of Exeter 1Objective The ¯rst and the second derivative of a function contain important qualitative information about the graph of a function. The ¯rst derivative of a function measures the steepness of its graph. The second derivative (the derivative of the derivative) measures how \curved" the graph is. We illustrate this and discuss for cost functions what it means in economic terms. 2 Examples of cost functions A function describes how one quantity changes in response to another quantity. An ex- ample is the total cost function of a ¯rm. Consider, for instance, a publisher selling a particular newspaper. His production costs depend on the number of newspapers he prints. This information { together with information on the demand side { will be im- portant if the publisher tries to make a pro¯t out of his business. There are three ways to describe the relation between production costs and the number of newspapers produced: 1. by a table, 2. by a graph, 3. using an algebraic expression to describe the relationship. Here are three examples of types of cost functions frequently used in microeconomics. 2.1 Example 1: Constant marginal costs In tabular form: quantity (in 100.000) 0 1 2 3 4 5 6 7 total costs (in 1000$) 90 110 130 150 170 190 210 230 With the aid of a graph: 220 200 180 160 140 TC120 100 80 60 40 20 0 1234567Q In algebraic form: TC(Q)=90+20Q 2.2 Example 2: Increasing
    [Show full text]
  • A Better Measure of Economic Growth: Gross Domestic Output (Gdo)
    COUNCIL OF ECONOMIC ADVISERS ISSUE BRIEF JULY 2015 A BETTER MEASURE OF ECONOMIC GROWTH: GROSS DOMESTIC OUTPUT (GDO) The growth of total economic output affects our assessment of current well-being as well as decisions about the future. Measuring the strength of the economy, however, can be difficult as it depends on surveys and administrative source data that are necessarily imperfect and incomplete. The total output of the economy can be measured in two distinct ways—Gross Domestic Product (GDP), which adds consumption, investment, government spending, and net exports; and Gross Domestic Income (GDI), which adds labor compensation, business profits, and other sources of income. In theory these two measures of output should be identical; however, they differ in practice because of measurement error. With today’s annual revision, the Bureau of Economic Analysis (BEA) began publishing a new measure of U.S. output—the “average of GDP and GDI”—which the Council of Economic Advisers (CEA) will refer to as Gross Domestic Output (GDO).1 This issue brief describes GDO, reviews its recent trends, and explains why it can be a more accurate measure of current economic growth and a better predictor of future economic growth than either GDP or GDI alone. What is Gross Domestic Output (GDO)? The first estimate of quarterly GDP is released nearly a month after each quarter’s end. Owing to data lags, GDI What we are calling “GDO” is the average of two existing is generally first released nearly two months after series, the headline Gross Domestic Product (GDP) and quarter’s end, along with the second estimate of GDP.2 its lesser-known counterpart, Gross Domestic Income As a result, with today’s advance GDP release, GDI and (GDI).
    [Show full text]
  • Input-Output Models and Economic Impact Analysis: What They Can and Cannot Tell Us by Aaron Mcnay, Economist
    Montana Economy at a Glance April 2013 Input-Output Models and Economic Impact Analysis: What they can and cannot tell us by Aaron McNay, Economist What economic impacts does a new business have in a region when it first opens its doors? What happens to business creation, or job growth, These questions have at when income taxes are increased or tax credits are least one thing in common, provided to businesses? they can each be examined in detail through a process How much does traffic decline on highways known as economic impact and roads when the price of gasoline increases? analysis. At a basic level, economic impact analysis examines the sectors in the area’s economy. For example, what happens economic effects that a business, project, governmental policy, when an automobile manufacturer increases the number of or economic event has on the economy of a geographic area. cars it produces each month? To increase production, the car At a more detailed level, economic impact models work by manufacturer will need to hire more workers, which directly modeling two economies; one economy where the economic increases total employment in the area. However, the car event being examined occurred and a separate economy manufacturer will also need to purchase more aluminum, steel, where the economic event did not occur. By comparing the and other goods that are used in the manufacturing process. two modeled economies, it is possible to generate estimates As the automobile manufacturer purchases more steel and of the total impact the project, businesses, or policy had on other inputs, the manufacturers of the goods, such as steel an area’s economic output, earnings, and employment.
    [Show full text]
  • A Primer on Profit Maximization
    Central Washington University ScholarWorks@CWU All Faculty Scholarship for the College of Business College of Business Fall 2011 A Primer on Profit aM ximization Robert Carbaugh Central Washington University, [email protected] Tyler Prante Los Angeles Valley College Follow this and additional works at: http://digitalcommons.cwu.edu/cobfac Part of the Economic Theory Commons, and the Higher Education Commons Recommended Citation Carbaugh, Robert and Tyler Prante. (2011). A primer on profit am ximization. Journal for Economic Educators, 11(2), 34-45. This Article is brought to you for free and open access by the College of Business at ScholarWorks@CWU. It has been accepted for inclusion in All Faculty Scholarship for the College of Business by an authorized administrator of ScholarWorks@CWU. 34 JOURNAL FOR ECONOMIC EDUCATORS, 11(2), FALL 2011 A PRIMER ON PROFIT MAXIMIZATION Robert Carbaugh1 and Tyler Prante2 Abstract Although textbooks in intermediate microeconomics and managerial economics discuss the first- order condition for profit maximization (marginal revenue equals marginal cost) for pure competition and monopoly, they tend to ignore the second-order condition (marginal cost cuts marginal revenue from below). Mathematical economics textbooks also tend to provide only tangential treatment of the necessary and sufficient conditions for profit maximization. This paper fills the void in the textbook literature by combining mathematical and graphical analysis to more fully explain the profit maximizing hypothesis under a variety of market structures and cost conditions. It is intended to be a useful primer for all students taking intermediate level courses in microeconomics, managerial economics, and mathematical economics. It also will be helpful for students in Master’s and Ph.D.
    [Show full text]
  • Report No. 2020-06 Economies of Scale in Community Banks
    Federal Deposit Insurance Corporation Staff Studies Report No. 2020-06 Economies of Scale in Community Banks December 2020 Staff Studies Staff www.fdic.gov/cfr • @FDICgov • #FDICCFR • #FDICResearch Economies of Scale in Community Banks Stefan Jacewitz, Troy Kravitz, and George Shoukry December 2020 Abstract: Using financial and supervisory data from the past 20 years, we show that scale economies in community banks with less than $10 billion in assets emerged during the run-up to the 2008 financial crisis due to declines in interest expenses and provisions for losses on loans and leases at larger banks. The financial crisis temporarily interrupted this trend and costs increased industry-wide, but a generally more cost-efficient industry re-emerged, returning in recent years to pre-crisis trends. We estimate that from 2000 to 2019, the cost-minimizing size of a bank’s loan portfolio rose from approximately $350 million to $3.3 billion. Though descriptive, our results suggest efficiency gains accrue early as a bank grows from $10 million in loans to $3.3 billion, with 90 percent of the potential efficiency gains occurring by $300 million. JEL classification: G21, G28, L00. The views expressed are those of the authors and do not necessarily reflect the official positions of the Federal Deposit Insurance Corporation or the United States. FDIC Staff Studies can be cited without additional permission. The authors wish to thank Noam Weintraub for research assistance and seminar participants for helpful comments. Federal Deposit Insurance Corporation, [email protected], 550 17th St. NW, Washington, DC 20429 Federal Deposit Insurance Corporation, [email protected], 550 17th St.
    [Show full text]
  • Working Paper No
    Department of Economics Natural or Unnatural Monopolies in UK Telecommunications? Lisa Correa Working Paper No. 501 September 2003 ISSN 1473-0278 Natural or Unnatural Monopolies In UK ∗ Telecommunications? ≅ Lisa Correa September 2003 ABSTRACT This paper analyses whether scale economies exists in the UK telecommunications industry. The approach employed differs from other UK studies in that panel data for a range of companies is used. This increases the number of observations and thus allows potentially for more robust tests for global subadditivity of the cost function. The main findings from the study reveal that although the results need to be treated with some caution allowing/encouraging infrastructure competition in the local loop may result in substantial cost savings. JEL Classification Numbers: D42, L11, L12, L51, L96, Keywords: Telecommunications, Regulation, Monopoly, Cost Functions, Scale Economies, Subadditivity ∗ The author is indebted to Richard Allard and Paul Belleflamme for their encouragement and advice. She would however also like to thank Richard Green and Leonard Waverman for their insightful comments and recommendations on an earlier version of this paper. All views expressed in the paper and any remaining errors are solely the responsibility of the author. ≅ Department of Economics, Queen Mary, University of London (UK). Preferred e- mail address for comments is [email protected] 1 Natural or Unnatural Monopolies in U.K. Telecommunications? 1. Introduction The UK has historically pursued a policy of infrastructure or local loop competition in the telecommunications market with the aim of delivering dynamic competition, the key focus of which is innovation. Recently, however, Directives from Europe have been issued which could be argued discourages competition in the local loop.
    [Show full text]
  • Fully Dynamic Input-Output/System Dynamics Modeling for Ecological-Economic System Analysis
    sustainability Article Fully Dynamic Input-Output/System Dynamics Modeling for Ecological-Economic System Analysis Takuro Uehara 1,* ID , Mateo Cordier 2,3 and Bertrand Hamaide 4 1 College of Policy Science, Ritsumeikan University, 2-150 Iwakura-Cho, Ibaraki City, 567-8570 Osaka, Japan 2 Research Centre Cultures–Environnements–Arctique–Représentations–Climat (CEARC), Université de Versailles-Saint-Quentin-en-Yvelines, UVSQ, 11 Boulevard d’Alembert, 78280 Guyancourt, France; [email protected] 3 Centre d’Etudes Economiques et Sociales de l’Environnement-Centre Emile Bernheim (CEESE-CEB), Université Libre de Bruxelles, 44 Avenue Jeanne, C.P. 124, 1050 Brussels, Belgium 4 Centre de Recherche en Economie (CEREC), Université Saint-Louis, 43 Boulevard du Jardin botanique, 1000 Brussels, Belgium; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +81-754663347 Received: 1 May 2018; Accepted: 25 May 2018; Published: 28 May 2018 Abstract: The complexity of ecological-economic systems significantly reduces our ability to investigate their behavior and propose policies aimed at various environmental and/or economic objectives. Following recent suggestions for integrating nonlinear dynamic modeling with input-output (IO) modeling, we develop a fully dynamic ecological-economic model by integrating IO with system dynamics (SD) for better capturing critical attributes of ecological-economic systems. We also develop and evaluate various scenarios using policy impact and policy sensitivity analyses. The model and analysis are applied to the degradation of fish nursery habitats by industrial harbors in the Seine estuary (Haute-Normandie region, France). The modeling technique, dynamization, and scenarios allow us to show trade-offs between economic and ecological outcomes and evaluate the impacts of restoration scenarios and water quality improvement on the fish population.
    [Show full text]
  • THE COSTS of PRODUCTION WHAT ARE COSTS? Costs As Opportunity Costs Economic Profit Versus Accounting Profit
    THE COSTS OF PRODUCTION The Market Forces of Supply and Demand •Supply and demand are the two words that economists use most often. •Supply and demand are the forces that make market economies work. •Modern microeconomics is about supply, demand, and market equilibrium. WHAT ARE COSTS? •According to the Law of Supply:y •Firms are willing to produce and sell a greater quantity of a good when the price of the good is high. •This results in a supply curve that slopes upward. •The Firm’s Objective•The economic goal of the firm is to maximize profits. Total Revenue, Total Cost, and Profit •Total Revenue•The amount a firm receives for the sale of its output. •Total Cost•The market value of the inputs a firm uses in production. •Profit is the firm’s total revenue minus its total cost. •Profit = Total revenue - Total cost Costs as Opportunity Costs •A firm’s cost of production includes all the opportunity costs of making its output of goods and services. •Explicit and Implicit Costs •A firm’s cost of production include explicit costs and implicit costs. •Explicit costs are input costs that require a direct outlay of money by the firm. •Implicit costs are input costs that do not require an outlay of money by the firm. Economic Profit versus Accounting Profit •Economists measure a firm’s economic profit as total revenue minus total cost, including both explicit and implicit costs. •Accountants measure the accounting profit as the firm’s total revenue minus only the firm’s explicit costs. •When total revenue exceeds both explicit and implicit costs, the firm earns economic profit.
    [Show full text]
  • Returns to Scale and Size in Agricultural Economics
    Returns to Scale and Size in Agricultural Economics John W. McClelland, Michael E. Wetzstein, and Wesley N. Musser Differences between the concepts of returns to size and returns to scale are systematically reexamined in this paper. Specifically, the relationship between returns to scale and size are examined through the use of the envelope theorem. A major conclusion of the paper is that the level of abstraction in applying a cost function derived from a homothetic technology within a relevant range of the expansion path may not be severe when compared to the theoretical, estimative, and computational advantages of these technologies. Key words: elasticity of scale, envelope theorem, returns to size. Agricultural economists investigating long-run scale, Euler's theorem, and the form of pro- relationships among levels of inputs, outputs, duction functions. However, the direct link be- and costs generally use concepts of returns to tween returns to size and scale is not devel- scale and size. Econometric studies which uti- oped. Hanoch investigates the elasticity of scale lize production or profit functions commonly and size in terms of variation with output and are concerned with returns to scale (de Janvry; illustrates that only at the cost-minimizing in- Lau and Yotopoulos), while synthetic studies put combinations are the two concepts equiv- of relationships between output and cost uti- alent. Hanoch further provides a proposition lize returns to size (Hall and LaVeen; Rich- stating that Frisch's "Regular Ulta-Passum ardson and Condra). However, as noted by Law" is neither necessary nor sufficient for a Bassett, the word scale is sometimes also used production technology to be associated with to mean size (of a plant).
    [Show full text]