Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains ANL/ESD-21/4 Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and Technical Information. Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC. ANL/ESD-21/4 Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains by Andrew Burnham1, David Gohlke1, Luke Rush1, Thomas Stephens1, Yan Zhou1, Mark A. Delucchi2, Alicia Birky3, Chad Hunter3, Zhenhong Lin4, Shiqi Ou4, Fei Xie4, Camron Proctor5, Steven Wiryadinata5, Nawei Liu6, and Madhur Boloor7 1 Energy Systems Division, Argonne National Laboratory 2 Lawrence Berkeley National Laboratory 3 National Renewable Energy Laboratory 4 Oak Ridge National Laboratory 5 Sandia National Laboratories 6 University of Tennessee 7 U.S. Department of Energy, Vehicle Technologies Office April 2021 Erratum to accompany “Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains” (Argonne National Laboratory report ANL/ESD-21/4) July 2021 After initial publication of this report, the authors were made aware of some minor typographical errors and omissions. As these mistakes can potentially confuse the results, they have been corrected in the present version. In the executive summary on page xxiii, “HEV” (hybrid electric vehicle) was once written as “BEV” (battery electric vehicle), contrary to the findings shown in the accompanying figure. Tables B.5 and B.6 previously stated the incorrect all-electric ranges for the battery electric vehicle and plug-in hybrid electric vehicle for the class 8 day cab tractor and class 4 delivery truck, respectively. These ranges have been corrected. Additionally, two sentences were added to Appendix B on page 143 to explicitly state the correctly modeled all-electric range for all medium- and heavy-duty vehicles. Several stakeholders have been added explicitly to the acknowledgments section. CONTENTS ACKNOWLEDGMENTS ............................................................................................................ xii LIST OF ACRONYMS ............................................................................................................... xiii EXECUTIVE SUMMARY ........................................................................................................ xvii 1. INTRODUCTION ................................................................................................................... 1 2. TCO CALCULATION METHODOLOGY AND BACKGROUND ..................................... 6 2.1. Conceptual Framework for Vehicle Costs ..................................................................... 6 2.2. Review of TCO Literature .............................................................................................. 8 2.2.1. Highlights from Specific Studies ..................................................................... 10 2.3. Quantification of TCO .................................................................................................. 14 2.3.1. Financial Analysis ............................................................................................ 19 2.3.2. Analysis Timeframe and Survivability ............................................................. 23 2.3.3. Vehicle Travel and Mileage ............................................................................. 24 3. COST ELEMENT DATA AND ASSUMPTIONS ............................................................... 28 3.1. Data Source Summary .................................................................................................. 28 3.2. Vehicle .......................................................................................................................... 29 3.2.1. Vehicle Retail Prices ........................................................................................ 29 3.2.2. Vehicle Fuel Economy ..................................................................................... 35 3.2.3. Validation of Retail Price and Fuel Economy .................................................. 43 3.2.4. Vehicle Financing ............................................................................................. 46 3.2.5. Vehicle Cost / Depreciation ............................................................................. 47 3.3. Fuel Costs and Infrastructure ....................................................................................... 61 3.4. Insurance Cost .............................................................................................................. 63 3.4.1. Passenger Light-Duty Insurance ...................................................................... 63 3.4.2. Commercial Heavy-Duty and Light-Duty Insurance ....................................... 70 3.5. Maintenance and Repair Costs ..................................................................................... 71 3.5.1. Annual M&R Costs, LDV ................................................................................ 72 3.5.2. Per-Mile M&R Costs, LDV ............................................................................. 76 3.5.3. Maintenance Costs by Service Schedule, LDV ................................................ 81 3.5.4. Repair Costs, LDV ........................................................................................... 86 3.5.5. Maintenance and Repair Costs, MHDV ........................................................... 90 3.6. Taxes and Fees ............................................................................................................. 92 3.6.1. Taxes and Fees, LDV ....................................................................................... 93 3.6.2. Taxes and Fees, MHDV ................................................................................... 95 3.7. Costs and Considerations Specific to Commercial Vehicles ....................................... 95 3.7.1. Summary of Qualitative Workshop Findings ................................................... 96 3.7.2. Commercial Vehicle Priorities ......................................................................... 99 3.7.3. Key Cost Elements ......................................................................................... 101 4. RESULTS ............................................................................................................................ 108 4.1. Base Case ................................................................................................................... 108 4.2. Side Cases................................................................................................................... 114 iii CONTENTS (CONT.) 4.2.1. Vehicle Technology Advancement ................................................................ 114 4.2.2. Current Vehicles ............................................................................................. 115 4.2.3. Vehicle Ownership Period.............................................................................. 116 4.2.4. Component Replacement ............................................................................... 117 4.2.5. Taxi Cabs ........................................................................................................ 118 4.2.6. Labor costs while Fueling .............................................................................
Recommended publications
  • Winning the Oil Endgame: Innovation for Profits, Jobs, and Security Oil Dependence
    “We’ve embarked on the beginning of the Last Days of the Age of Oil. Nations of the world that are striving to modernize will make choices different from the ones we have made. They will have to. And even today’s industrial powers will shift energy use patterns....[T]he market share for carbon-rich fuels will diminish, as the demand for other forms of energy grows. And energy companies have a choice: to embrace the future and recognize the growing demand for a wide array of fuels; or ignore reality, and slowly—but surely—be left behind.” —Mike Bowlin, Chairman and CEO, ARCO, and Chairman, American Petroleum Institute, 9 Feb. 1999 1 “My personal opinion is that we are at the peak of the oil age and at the same time the begin- ning of the hydrogen age. Anything else is an interim solution in my view. The transition will be very messy, and will take many and diverse competing technological paths, but the long- term future will be in hydrogen and fuel cells.” —Herman Kuipers, Business Team Manager, Innovation & Research, Shell Global Solutions, 1. Bowlin 1999. 21 Nov. 2000 2 2. Kuipers 2000. “The days of the traditional oil company are numbered, in part because of emerging technolo- gies such as fuel cells....” 3. Bijur, undated. — Peter I. Bijur, Chairman and CEO, Texaco, Inc., late 1990s 3 4. Ingriselli 2001. “Market forces, greenery, and innovation are shaping the future of our industry and propelling 5. Gibson-Smith 1998. us inexorably towards hydrogen energy. Those who don’t pursue it…will rue it.” — Frank Ingriselli, President, Texaco Technology 6.
    [Show full text]
  • THE COSTS of PRODUCTION WHAT ARE COSTS? Costs As Opportunity Costs Economic Profit Versus Accounting Profit
    THE COSTS OF PRODUCTION The Market Forces of Supply and Demand •Supply and demand are the two words that economists use most often. •Supply and demand are the forces that make market economies work. •Modern microeconomics is about supply, demand, and market equilibrium. WHAT ARE COSTS? •According to the Law of Supply:y •Firms are willing to produce and sell a greater quantity of a good when the price of the good is high. •This results in a supply curve that slopes upward. •The Firm’s Objective•The economic goal of the firm is to maximize profits. Total Revenue, Total Cost, and Profit •Total Revenue•The amount a firm receives for the sale of its output. •Total Cost•The market value of the inputs a firm uses in production. •Profit is the firm’s total revenue minus its total cost. •Profit = Total revenue - Total cost Costs as Opportunity Costs •A firm’s cost of production includes all the opportunity costs of making its output of goods and services. •Explicit and Implicit Costs •A firm’s cost of production include explicit costs and implicit costs. •Explicit costs are input costs that require a direct outlay of money by the firm. •Implicit costs are input costs that do not require an outlay of money by the firm. Economic Profit versus Accounting Profit •Economists measure a firm’s economic profit as total revenue minus total cost, including both explicit and implicit costs. •Accountants measure the accounting profit as the firm’s total revenue minus only the firm’s explicit costs. •When total revenue exceeds both explicit and implicit costs, the firm earns economic profit.
    [Show full text]
  • Cost Functions Definitions of Costs Economic Cost
    Cost Functions [See Chap 10] . 1 Definitions of Costs • Economic costs include both implicit and explicit costs. • Explicit costs include wages paid to employees and the costs of raw materials. • Implicit costs include the opportunity cost of the entrepreneur and the capital used for production. 2 Economic Cost • The economic cost of any input is its opportunity cost: – the remuneration the input would receive in its best alternative employment 3 1 Model • Firm produces single output, q • Firm has N inputs {z 1,…z N}. • Production function q = f(z 1,…z N) – Monotone and quasi-concave. • Prices of inputs {r 1,…r N}. • Price of output p. 4 Firm’s Payoffs • Total costs for the firm are given by total costs = C = r1z1 + r2z2 • Total revenue for the firm is given by total revenue = pq = pf (z1,z2) • Economic profits ( π) are equal to π = total revenue - total cost π = pq - r1z1 - r2z2 π = pf (z1,z2) - r1z1 - r2z2 5 Firm’s Problem • We suppose the firm maximizes profits. • One-step solution – Choose (q,z 1,z 2) to maximize π • Two-step solution – Minimize costs for given output level. – Choose output to maximize revenue minus costs. • We first analyze two-step method – Where do cost functions come from? 6 2 COST MINIMIZATION PROBLEM . 7 Cost-Minimization Problem (CMP) • The cost minimization problem is min 1zr 1 + r2 z2 s.t. f (z1, z2 ) ≥ q and z1, z2 ≥ 0 • Denote the optimal demands by zi*(r 1,r 2,q) • Denote cost function by C(r 1,r 2,q) = r 1z1*(r 1,r 2,q) + r 2z2*(r 1,r 2,q) • Problem very similar to EMP.
    [Show full text]
  • Principles of Economics, Case and Fair,8E
    Chapter 8 Short-Run Costs and Output Decisions Prepared by: Fernando & Yvonn Quijano © 2007 Prentice Hall Business Publishing Principles of Economics 8e by Case and Fair Short-Run Costs 8 and Output Decisions Chapter Outline Costs in the Short Run Fixed Costs Variable Costs Total Costs Run Costs and Costs Run - Short-Run Costs: A Review Output Decisions Output Output Decisions: Revenues, Costs, and Profit Maximization Total Revenue (TR) and Marginal Revenue (MR) Comparing Costs and Revenues to Maximize Profit The Short-Run Supply Curve CHAPTER 8: Short CHAPTER Looking Ahead © 2007 Prentice Hall Business Publishing Principles of Economics 8e by Case and Fair 2 of 31 SHORT-RUN COSTS AND OUTPUT DECISIONS You have seen that firms in perfectly competitive industries make three specific decisions. DECISIONS are based on INFORMATION 1. The quantity of output to 1. The price of output Run Costs and Costs Run - supply Output Decisions Output 2. How to produce that 2. Techniques of production output (which technique available* to use) 3. The quantity of each 3. The price of inputs* input to demand *Determines production costs CHAPTER 8: Short CHAPTER FIGURE 8.1 Decisions Facing Firms © 2007 Prentice Hall Business Publishing Principles of Economics 8e by Case and Fair 3 of 31 COSTS IN THE SHORT RUN fixed cost Any cost that does not depend on the firm’s level of output. These costs are incurred even if the firm is producing nothing. There are no fixed costs in the long run. Run Costs and Costs Run - variable cost A cost that depends on the Output Decisions Output level of production chosen.
    [Show full text]
  • Lvchoice: Light Vehicle Market Penetration Model Documentation
    LVChoice: Light Vehicle Market Penetration Model Documentation Prepared for: July 2, 2012 Prepared by: TA Engineering, Inc. Technical Analysis and Engineering 405 Frederick Road Suite 252 Baltimore, Maryland 21228 (410) 747‐9606 (phone) (410) 747‐9609 (fax) www.ta‐engineering.com Table of Contents List of Tables ...................................................................................................................................iii List of Figures ..................................................................................................................................iv List of Acronyms...............................................................................................................................v 1.0 Introduction............................................................................................................................. 1 2.0 Purpose.................................................................................................................................... 2 3.0 Sources..................................................................................................................................... 3 3.1 Vehicle Choice Model (VCM) .............................................................................................. 3 3.1.1 Analytical Context......................................................................................................... 3 3.1.2 VCM Structure..............................................................................................................
    [Show full text]
  • ECON 200. Introduction to Microeconomics Homework 5 Part I
    ECON 200. Introduction to Microeconomics Homework 5 Part I Name:________________________________________ [Multiple Choice] 1. Diminishing marginal product explains why, as a firm’s output increases, (d) a. the production function and total-cost curve both get steeper. b. the production function and total-cost curve both get flatter c. the production function gets steeper, while the total-cost curve gets flatter. d. the production function gets flatter, while the total-cost curve gets steeper. 2. A firm is producing 1,000 units at a total cost of $5,000. If it were to increase production to 1,001 units, its total cost would rise to $5,008. What does this information tell you about the firm? (d) a. Marginal cost is $5, and average variable cost is $8. b. Marginal cost is $8, and average variable cost is $5. c. Marginal cost is $5, and average total cost is $8. d. Marginal cost is $8, and average total cost is $5. 3. A firm is producing 20 units with an average total cost of $25 and marginal cost of $15. If it were to increase production to 21 units, which of the following must occur? (c) a. Marginal cost would decrease. b. Marginal cost would increase. c. Average total cost would decrease. d. Average total cost would increase 4. The government imposes a $1,000 per year license fee on all pizza restaurants. Which cost curves shift as a result? (b) a. average total cost and marginal cost b. average total cost and average fixed cost c. average variable cost and marginal cost d.
    [Show full text]
  • Economies of Scope and Scale of Multi-Product US Cash Grain Farms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics Economies of Scope and Scale of Multi-Product U.S. Cash Grain Farms: A Flexible Fixed-Cost Quadratic (FFCQ) Model Analysis Edouard K. Mafoua Research/Teaching Associate Department of Agricultural, Food and Resource Economics Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Phone: (732) 932-9171, ext.252 E-mail: [email protected] May 15, 2002 Abstract The evidence about the magnitude of scope and scale economies in U.S. cash grain farming is revealed from the empirical estimation of the flexible fixed cost quadratic (FFCQ) model. This framework explicitly disaggregates the crop output vector to take the heterogeneity of output and gives insight to farmers to answer interesting questions such as: Are three-crop farms more cost efficient than two- crop or single-crop farms? How important are economies of scope (fixed-cost and variable-cost components) in two-crop farms and three-crop farms? Two-crop farms as well as three-crop farms exhibit overall economies of scale and scope in all four-size categories that increase with the farm size. They are able to lower the cost of producing crops in the same farm by spreading fixed costs over two or three crops and/or by exploiting product cost complementarity, or diversifying risks. Selected Paper, American Agricultural Economics Association Meeting, Long Beach, California, July 28-31, 2002. 1 Economies of Scope and Scale of Multi-Product U.S. Cash Grain Farms: A Flexible Fixed-Cost Quadratic (FFCQ) Model Analysis 1.
    [Show full text]
  • Recitation Notes #3
    Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #3 Review of Production and Cost Concepts Thursday - September 23, 2004 OUTLINE OF TODAY’S RECITATION 1. The Production function: brief review of production function and isoquants 2. Economic Cost and User Cost of Capital: definitions 3. Cost concepts: Types of costs and how to calculate them 4. Economies of scale and scope: definition and terminology warnings 5. Learning curve effects: definition and examples 6. Numeric Examples: applying these concepts in practice 1. THE PRODUCTION FUNCTION 1.1 Definition 1.2 Production with one variable input 1.3 Production with two variable input 1.1 Definition In the production process, firms turn inputs, which are also called factors of production, into outputs. We can divide inputs into the broad categories of labor, materials and capital. The relationship between the inputs to the production process and the resulting output is described by a production function. The production function indicates the maximum output Q that a firm will produce for every specified combination of inputs. Assuming for simplicity that there are two inputs, labor L and capital K, the production function can be written as: Q = f(K, L) Example: L measures the number of workers and K the amount of machinery employed by a firm to produce widgets. The production function gives the number Q of widgets that can be produced for any given combination of the inputs. Every production function refers to a given technology. As technology advances, the production function will change to reflect the higher level of output that can be obtained with the same 1 inputs.
    [Show full text]
  • Price and Average Cost
    Economics 165 Winter 2002 Problem Set #2 Problem 1: Consider the monopolistic competition model. Say we are looking at sailboat producers. Each producer has fixed costs of 10 million and marginal costs of 20,000 per boat. Each faces demand of the form Q = S(1/n) – (P – Pa)/100,000) where S is the total quantity of boats sold. Suppose 2,500 sailboats are sold in the U.S. every year. a) Derive the marginal revenue of each producer (assuming that they are too small to affect the average price Pa). Set MR = MC as a profit maximizing monopolist does and use the symmetry assumption to derive the price P as a function of the number of firms n. To derive marginal revenue, start by expressing demand as an explicit function of price… Q = S(1/n) – (P – Pa)/100,000) P = 100,000/n – 100,000(Q/S) + Pa Now multiply both sides by Q to find total revenue… TR = PQ = (100,000/n)Q – 100,000(Q2/S) + QPa Finally, differentiate with respect to Q to find marginal revenue… MR = 100,000/n – 200,000(Q/S) + Pa If we plug in 2,500 for S and set equal to MC = 20,000 we get… MR = 100,000/n – 80Q + Pa = 20,000 = MC Solve for Q and you get… Q = 1,250/n + Pa/80 – 250. Using the symmetry assumption (all firms produce equal shares of the 2,500 boats) we get Q = 2,500/n, so. 2,500/n = 1,250/n + Pa/80 – 250.
    [Show full text]
  • AS Economics: Microeconomics Ability to Pay Where Taxes Should
    AS Economics: Microeconomics Key Term Glossary Ability to pay Where taxes should be set according to how well a person can afford to pay Ad valorem tax An indirect tax based on a percentage of the sales price of a good or service Adam Smith One of the founding fathers of modern economics. His most famous work was the Wealth of Nations (1776) - a study of the progress of nations where people act according to their own self-interest - which improves the public good. Smith's discussion of the advantages of division of labour remains a potent idea Adverse selection Where the expected value of a transaction is known more accurately by the buyer or the seller due to an asymmetry of information; e.g. health insurance Air passenger duty APD is a charge on air travel from UK airports. The level of APD depends on the country to which an airline passenger is flying. Alcohol duties Excise duties on alcohol are a form of indirect tax and are chargeable on beer, wine and spirits according to their volume and/or alcoholic content Alienation A sociological term to describe the estrangement many workers feel from their work, which may reduce their motivation and productivity. It is sometimes argued that alienation is a result of the division of labour because workers are not involved with the satisfaction of producing a finished product, and do not feel part of a team. Allocative efficiency Allocative efficiency occurs when the value that consumers place on a good or service (reflected in the price they are willing and able to pay) equals the cost of the resources used up in production (technical definition: price eQuals marginal cost).
    [Show full text]
  • Production and Cost Analysis
    Production and Cost Analysis The entire production process begins with the supply of factors of production or inputs used towards the production of a final good we all consume in the final good market. Some examples of these factors of production are the labor you will supply when you graduate, machines, raw materials such as pulp, power ( such as gas, electricity), machines, factory complex, research laboratory etc. We will begin by assuming that the prices of factors of production are constant first. The reason for this initial simplification is that we want to understand first how and why firms choose a particular way of producing given those prices. Objectives: 1. Differentiate between economic and accounting profit. 2. Distinguish between long and short run production. 3. Understand what is diminishing marginal productivity. 4. How to calculate the various cost measures, and concepts. 5. Distinguish between various cost curves, and describe their interrelationship, and individual shapes. 6. Understand the firm’s choice using the cost curves. The role of the firm The firm as an economic institution (or a component in the market economy machine) transforms or “converts” factors of production into goods and services. Precisely, Organizes factors of production → Produces the goods/services → Sells to 1.individuals and/or 2.other businesses/firms and/or 3.the government. The precise combination of activities and process is dependent on the cost of each process. If subcontracting out a process without any loss of quality is attainable, it would be sensible to do so. While for another, where quality and precision might be loss if a particular process is subcontracted out, the firm under consideration would not do so.
    [Show full text]
  • Cost and Value Management in Projects
    COST AND VALUE MANAGEMENT IN PROJECTS Ray R. Venkataraman and Jeffrey K. Pinto John Wiley & Sons, Inc. This book is printed on acid-free paper. Copyright 2008 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
    [Show full text]