Microorganisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Staphylococcal Activity of Variovorax Paradoxus EPS
California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 9-2017 Anti-Staphylococcal Activity of Variovorax paradoxus EPS Patricia Holt-Torres Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Microbiology Commons Recommended Citation Holt-Torres, Patricia, "Anti-Staphylococcal Activity of Variovorax paradoxus EPS" (2017). Electronic Theses, Projects, and Dissertations. 584. https://scholarworks.lib.csusb.edu/etd/584 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. 0 Anti-Staphylococcal Activity of Variovorax paradoxus EPS A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Patricia S. Holt-Torres September 2017 1 2 Table of Contents Page number Introduction 4 Evolution of Antibiotics and Antibiotic Resistance 4 in environmental and soil bacteria Antibiotic Classes and Mechanisms 4 Antimicrobial Resistance 6 Methicillin-Resistant Staphylococcus aureus (MRSA) 8 Novel antibiotics 10 Non-ribosomal peptide synthetases 10 Variovorax paradoxus EPS 11 Hypothesis 13 Methods and materials 14 Media and Culture Conditions 14 T-streak method to determine anti-staphylococcal activity 14 RNA extraction of Wild Type V. paradoxus EPS 15 Reverse Transcription of Wild type V. paradoxus EPS 16 Expression analysis of anti-staphylococcal activity of 16 Variovorax paradoxus EPS Quantitative analysis of anti-staphylococcal activity 17 Embedded S. -
HYGIENE SCIENCES 45Th ISSUE
Committed to the advancement of Clinical & Industrial Disinfection & Microbiology VOLUME - VIII ISSUE - V DEC 2015 - JAN 2016 Editorial We would like to thank all our readers for their precious inputs & encouragement in making Contents this Journal a successful effort. Here’s another issue of JHS coming your Contents way……………….. Mini Review Section - Control of microbial growth means the reduction in numbers and activity of the total microbial flora, is effected in two basic ways i.e., either by killing n Editorial 1 microorganisms or by inhibiting the growth of microorganisms. Controlling of microorganisms is done to prevent transmission of disease and infection, to prevent contamination by the growth of undesirable microorganisms and to prevent deterioration and nMini review 2 spoilage of materials by microorganisms. Control of microorganisms usually involves the use of physical agents and chemical agents. Current Trends Section - Disinfection is utmost important factor in the prevention of nCurrent Trends 5 nosocomial infections. It has been known that failure in disinfection increases the morbidity, mortality, and treatment costs, whereas unnecessary disinfection procedures increase hospital expenses and select resistant microorganisms. In order to avoid such risks, the first step in the hospital setting should be the selection of right disinfectants that have proven nIn Profile 7 activity against broad spectrum of microorganisms. Super-oxidized water has been used in various industrial areas in our country in recent years. There are many international researches being performed to determine the efficacy of super-oxidized water. However, this study is one of the very few studies that will lead further studies investigating the activity of nRelaxed Mood 8 super-oxidized water on microorganisms causing nosocomial infections. -
Widespread Soil Bacterium That Oxidizes Atmospheric Methane
Widespread soil bacterium that oxidizes atmospheric methane Alexander T. Tveita,1, Anne Grethe Hestnesa,1, Serina L. Robinsona, Arno Schintlmeisterb, Svetlana N. Dedyshc, Nico Jehmlichd, Martin von Bergend,e, Craig Herboldb, Michael Wagnerb, Andreas Richterf, and Mette M. Svenninga,2 aDepartment of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsoe, Norway; bCenter of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; cWinogradsky Institute of Microbiology, Research Center of Biotechnology of Russian Academy of Sciences, 117312 Moscow, Russia; dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; eFaculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04109 Leipzig, Germany; and fCenter of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved March 7, 2019 (received for review October 22, 2018) The global atmospheric level of methane (CH4), the second most as-yet-uncultured clades within the Alpha- and Gammaproteobacteria important greenhouse gas, is currently increasing by ∼10 million (16–18) which were designated as upland soil clusters α and γ tons per year. Microbial oxidation in unsaturated soils is the only (USCα and USCγ, respectively). Interest in soil atmMOB has known biological process that removes CH4 from the atmosphere, increased significantly since then because they are responsible but so far, bacteria that can grow on atmospheric CH4 have eluded for the only known biological removal of atmospheric CH4 all cultivation efforts. -
The Methanol Dehydrogenase Gene, Mxaf, As a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments
The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lau, Evan, Meredith C. Fisher, Paul A. Steudler, and Colleen Marie Cavanaugh. 2013. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 8(2): e56993. Published Version doi:10.1371/journal.pone.0056993 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Methanol Dehydrogenase Gene, mxaF,asa Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2 1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America Abstract The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. -
Novel Facultative Methylocella Strains Are Active Methane Consumers at Terrestrial Natural Gas Seeps Muhammad Farhan Ul Haque1,2* , Andrew T
Farhan Ul Haque et al. Microbiome (2019) 7:134 https://doi.org/10.1186/s40168-019-0741-3 RESEARCH Open Access Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps Muhammad Farhan Ul Haque1,2* , Andrew T. Crombie3* and J. Colin Murrell1 Abstract Background: Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites. Results: The community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA- SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. -
Genome Scale Metabolic Model of the Versatile Methanotroph Methylocella Silvestris Sergio Bordel1,2*† , Andrew T
Bordel et al. Microb Cell Fact (2020) 19:144 https://doi.org/10.1186/s12934-020-01395-0 Microbial Cell Factories RESEARCH Open Access Genome Scale Metabolic Model of the versatile methanotroph Methylocella silvestris Sergio Bordel1,2*† , Andrew T. Crombie3†, Raúl Muñoz1,2 and J. Colin Murrell4 Abstract Background: Methylocella silvestris is a facultative aerobic methanotrophic bacterium which uses not only meth- ane, but also other alkanes such as ethane and propane, as carbon and energy sources. Its high metabolic versatility, together with the availability of tools for its genetic engineering, make it a very promising platform for metabolic engineering and industrial biotechnology using natural gas as substrate. Results: The frst Genome Scale Metabolic Model for M. silvestris is presented. The model has been used to predict the ability of M. silvestris to grow on 12 diferent substrates, the growth phenotype of two deletion mutants (ΔICL and ΔMS), and biomass yield on methane and ethanol. The model, together with phenotypic characterization of the dele- tion mutants, revealed that M. silvestris uses the glyoxylate shuttle for the assimilation of C1 and C2 substrates, which is unique in contrast to published reports of other methanotrophs. Two alternative pathways for propane metabolism have been identifed and validated experimentally using enzyme activity tests and constructing a deletion mutant (Δ1641), which enabled the identifcation of acetol as one of the intermediates of propane assimilation via 2-propanol. The model was also used to integrate proteomic data and to identify key enzymes responsible for the adaptation of M. silvestris to diferent substrates. Conclusions: The model has been used to elucidate key metabolic features of M. -
Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. -
Investigating the Functions of the Plant-Associated Genus Variovorax in the Populus Rhizosphere
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2019 Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere Jennifer Ann Childers University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Childers, Jennifer Ann, "Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5570 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Jennifer Ann Childers entitled "Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Life Sciences. Jennifer L. Morrell-Falvey, Major Professor We have read this thesis and recommend its acceptance: Dale A. Pelletier, Gladys Alexandre, Sarah L. Lebeis Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Jennifer Ann Childers December 2019 Copyright © 2019 by Jennifer Ann Childers All rights reserved. -
Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core
microorganisms Communication Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core Pauline C. M. Petit 1, Olivier Pible 2, Valérie Van Eesbeeck 3, Claude Alban 1 , 2 3 3, 2 Gérard Steinmetz , Mohamed Mysara , Pieter Monsieurs y, Jean Armengaud and 1, , Corinne Rivasseau * z 1 Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), CNRS, INRAE, Université Grenoble Alpes, F-38054 Grenoble, France; [email protected] (P.C.M.P.); [email protected] (C.A.) 2 Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, F-30200 Bagnols-sur-Cèze, France; [email protected] (O.P.); [email protected] (G.S.); [email protected] (J.A.) 3 Microbiology Unit, The Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol, Belgium; • [email protected] (V.V.E.); [email protected] (M.M.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +33-169-08-60-00 Present Address: Department of Microbiology, Wageningen University and Research, 6708 Wageningen, y The Netherlands. Present Address: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, z 91198 Gif-sur-Yvette, France. Received: 21 October 2020; Accepted: 23 November 2020; Published: 25 November 2020 Abstract: The pools of nuclear reactor facilities constitute harsh environments for life, bathed with ionizing radiation, filled with demineralized water and containing toxic radioactive elements. The very few studies published to date have explored water pools used to store spent nuclear fuels. -
Physiological and Genomic Features of Highly Alkaliphilic Hydrogen-Utilizing Betaproteobacteria from a Continental Serpentinizing Site
ARTICLE Received 17 Dec 2013 | Accepted 16 Apr 2014 | Published 21 May 2014 DOI: 10.1038/ncomms4900 OPEN Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site Shino Suzuki1, J. Gijs Kuenen2,3, Kira Schipper1,3, Suzanne van der Velde2,3, Shun’ichi Ishii1, Angela Wu1, Dimitry Y. Sorokin3,4, Aaron Tenney1, XianYing Meng5, Penny L. Morrill6, Yoichi Kamagata5, Gerard Muyzer3,7 & Kenneth H. Nealson1,2 Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. 1 J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California 92037, USA. 2 University of Southern California, 835 W. 37th St. SHS 560, Los Angeles, California 90089, USA. 3 Delft University of Technology, Julianalaan 67, Delft, 2628BC, The Netherlands. -
Coordinated Surface Activities in Variovorax Paradoxus EPS W David Jamieson1, Michael J Pehl2, Glenn a Gregory2,3 and Paul M Orwin*2
BMC Microbiology BioMed Central Research article Open Access Coordinated surface activities in Variovorax paradoxus EPS W David Jamieson1, Michael J Pehl2, Glenn A Gregory2,3 and Paul M Orwin*2 Address: 1Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK, 2Department of Biology, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA, 92407, USA and 3Current address: Loma Linda University, School of Dentistry, Loma Linda, CA, USA Email: W David Jamieson - [email protected]; Michael J Pehl - [email protected]; Glenn A Gregory - [email protected]; Paul M Orwin* - [email protected] * Corresponding author Published: 12 June 2009 Received: 16 September 2008 Accepted: 12 June 2009 BMC Microbiology 2009, 9:124 doi:10.1186/1471-2180-9-124 This article is available from: http://www.biomedcentral.com/1471-2180/9/124 © 2009 Jamieson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Variovorax paradoxus is an aerobic soil bacterium frequently associated with important biodegradative processes in nature. Our group has cultivated a mucoid strain of Variovorax paradoxus for study as a model of bacterial development and response to environmental conditions. Colonies of this organism vary widely in appearance depending on agar plate type. Results: Surface motility was observed on minimal defined agar plates with 0.5% agarose, similar in nature to swarming motility identified in Pseudomonas aeruginosa PAO1. -
Comamonadaceae, a New Family Encompassing the Acidovorans Rrna Complex, Including Variovorax Paradoxus Gen
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 445450 Vol. 41, No. 3 0020-7713/91/030445-06$02.OO/O Copyright 0 1991, International Union of Microbiological Societies NOTES Comamonadaceae, a New Family Encompassing the Acidovorans rRNA Complex, Including Variovorax paradoxus gen. nov. , comb. nov. for Alcaligenes paradoxus (Davis 1969) A. WILLEMS, J. DE LEY, M. GILLIS," AND K. KERSTERS Laboratorium voor Microbiologie en microbiele Genetica, Rijksuniversiteit Gent, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium A new family, the Comamonadaceae, is proposed for the organisms belonging to the acidovorans rRNA complex in the beta subclass of the Proteobacteria. This family includes the genera Comamonas, Acidovorax, Hydrogenophaga, Xylophilus, and Variovorax (formerly Alcaligenes paradoxus), as well as a number of phylogenetically misnamed Aquaspirillum and phytopathogenic Pseudomonas species. DNA-rRNA hybridization and 16s rRNA cataloging have duplex (i.e., when DNA and rRNA from the same reference shown that several of the large taxa described in the past as strain are used) and the Tm(,) value of a heterologous phenotypic entities (e.g., the genus Pseudomonas, spirilla, hybrid]. Comparable or slightly greater AT,(,) ranges have the genus Alcaligenes, photosynthetic bacteria) are phylo- been observed in several bacterial families, including the genetically very heterogeneous (12, 21, 27, 37-40). As a Neisseriaceae [AT,(,) range, 7.6"C (29)], the Alcaligenaceae consequence, these taxa are gradually being split up into [AT,,,, range, 6°C (9)], the Acetobacteriaceae [AT,(,) range, several genera, and only the group that includes the original 5°C (19)], the Enterobacteriaceae [AT,(,) range, 8°C (lo)], type species can retain the original genus name.