Comamonadaceae, a New Family Encompassing the Acidovorans Rrna Complex, Including Variovorax Paradoxus Gen

Total Page:16

File Type:pdf, Size:1020Kb

Comamonadaceae, a New Family Encompassing the Acidovorans Rrna Complex, Including Variovorax Paradoxus Gen INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 445450 Vol. 41, No. 3 0020-7713/91/030445-06$02.OO/O Copyright 0 1991, International Union of Microbiological Societies NOTES Comamonadaceae, a New Family Encompassing the Acidovorans rRNA Complex, Including Variovorax paradoxus gen. nov. , comb. nov. for Alcaligenes paradoxus (Davis 1969) A. WILLEMS, J. DE LEY, M. GILLIS," AND K. KERSTERS Laboratorium voor Microbiologie en microbiele Genetica, Rijksuniversiteit Gent, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium A new family, the Comamonadaceae, is proposed for the organisms belonging to the acidovorans rRNA complex in the beta subclass of the Proteobacteria. This family includes the genera Comamonas, Acidovorax, Hydrogenophaga, Xylophilus, and Variovorax (formerly Alcaligenes paradoxus), as well as a number of phylogenetically misnamed Aquaspirillum and phytopathogenic Pseudomonas species. DNA-rRNA hybridization and 16s rRNA cataloging have duplex (i.e., when DNA and rRNA from the same reference shown that several of the large taxa described in the past as strain are used) and the Tm(,) value of a heterologous phenotypic entities (e.g., the genus Pseudomonas, spirilla, hybrid]. Comparable or slightly greater AT,(,) ranges have the genus Alcaligenes, photosynthetic bacteria) are phylo- been observed in several bacterial families, including the genetically very heterogeneous (12, 21, 27, 37-40). As a Neisseriaceae [AT,(,) range, 7.6"C (29)], the Alcaligenaceae consequence, these taxa are gradually being split up into [AT,,,, range, 6°C (9)], the Acetobacteriaceae [AT,(,) range, several genera, and only the group that includes the original 5°C (19)], the Enterobacteriaceae [AT,(,) range, 8°C (lo)], type species can retain the original genus name. the Vibrionaceae [AT,,,, range, 8°C (lo)], and the Pasteurel- The acidovorans rRNA complex is a large collection of laceae [AT,(,) range, 8°C (S)]. generically misnamed taxa that are closely related to Coma- Likewise, an analysis of 16s rRNA catalogs showed that monas acidovorans (32,33,35). This group belongs to rRNA strains of [Aquaspirillum aquaticum] (now Comamonas ter- superfamily I11 or the beta subclass of the Proteobacteria rigena [36]), C. terrigena, [Pseudomonas]acidovorans (now (30). It gradually emerged from the Pseudomonas aci- C. acidovorans [31]), [Pseudomonas] testosteroni (now Co- dovorans group, one of at least five genotypic groups that marnonas testosteroni [3 11) , and [Aquaspirillum] gracile were delineated within the genus Pseudomonas by using form a relatively tight phylogenetic cluster with the lowest DNA-rRNA hybridization (12, 26) and were later confirmed branching at an SABvalue of 0.75 (40). by using several other techniques (2, 4, 16, 24, 37). During We propose that the acidovorans rRNA complex should the last decade this group was extended considerably. A list be recognized as a new bacterial family, the Comamona- of the taxa belonging to this group is given in Table 1. The daceae, in rRNA superfamily I11 (the beta subclass of the classification of several of these species has already been Proteobacteria). The organisms belonging to this family are revised (Table 1). For the sake of clarity, taxa that are genotypically highly related and phenotypically rather di- misnamed according to present phylogenetic data are listed verse (36). They include common soil and water inhabitants, below in brackets. H, or CO oxidizers, phytopathogens, nonpathogenic isolates The criterion which we used to assign strains to the of clinical origin, a psychrophilic isolate, and rods and acidovorans rRNA complex is that their DNAs should have helical cells which are polarly, lofotrichously, or peritri- T,(,, values [T,(,) is the temperature, in degrees Celsius, at chously flagellated. Compared with the original P. aci- which one-half of a DNA-rRNA duplex is thermally dena- dovorans group (Pseudomonas section I11 [25]),the family tured] of at least 75°C when they are hybridized with labeled Comamonadaceae encompasses a much larger number of rRNA from C. acidovorans Stanier 14T (= LMG 1126T = taxa and a much larger variety of phenotypes. Many of the ATCC 15668T) (T = type strain) or any other strain belong- characteristics of the original P. acidovorans group (26) ing to the acidovorans rRNA complex. On the basis of the (e.g., meta cleavage of protocatechuate, absence of growth results of extensive DNA-rRNA hybridization, in which 15 at 41"C, absence of denitrification [25], and typical regulation labeled rRNA probes were used, the following rRNA of aromatic amino acid biosynthesis [4]) have not been branches were delineated (Fig. 1): one Xylophilus rRNA studied in all taxa belonging to the Comamonadaceae and branch, one Hydrogenophaga rRNA branch, one Variovo- therefore cannot be used to define this family phenotypi- rax rRNA branch, one Acidovorax rRNA branch, four cally. Phenotypic comparisons at the family level in this case Comamonas rRNA branches, five [Aquaspirillum] rRNA are complex because the family Comamonadaceae unites a branches, and the [Pseudomonas] avenue rRNA branch. variety of taxa that were in the past assigned to various These taxa grouped at mean AT,,,, values of 4 to 5°C [AT,(,) genera and regarded as unrelated on phenotypic grounds. is the difference between the Tm(,)value of the homologous Table 2 shows several important characteristics of the Co- mamonadaceae and other phylogenetic groups which phe- notypically resemble members of this family. As one climbs * Corresponding author. the taxonomic hierarchy, phenotypic differentiation be- 445 446 NOTES INT. J. SYST.BACTERIOL. TABLE 1. Taxa belonging to the Comamonadaceaen Present nameb Previous name(s) Reference(s) Acidovorax delajieldii Pseudomonas delajieldii, E. Falsen group 13‘ 33 Acidovorax facilis Pseudomonas facilis 33 Acidovorax temperans E. Falsen group 16“ 33 Comamonas acidovorans Pseudomonas acidovorans 31 Comamonas terrigena Comamonas terrigena, Aquaspirillum aquaticum, E. Falsen group 10“ 14, 36 Comamonas testosteroni Pseudomonas testosteroni 31 Hydrogenophaga Java Pseudomonas Java 32 Hydrogenophaga palleronii Pseudomonas palleronii 32 Hydrogenophaga pseudoflava Pseudomonas pseudoflava, “Pseudomonas carboxydoflava” 32 Hydrogenophaga taeniospiralis Pseudomonas taeniospiralis 32 [Aquaspirillum]anulus Aquaspirillum anulus 28 [Aquaspirillum]delicatum Aquaspirillum delicatum 28 [Aquaspirillum]giesbergeri Aquaspirillum giesbergeri 28 [Aquaspirillum]gracile Aquaspirillum gracile 28 [Aquaspirillum] metamorphum Aquaspirillum metamorphum 28 [Aquaspirillum]psychrophilum Aquaspirillum psychrophilum 28 [Aquaspirillum] sinuosum Aquaspirillurn sinuosum 28 [Pseudomonas] avenae Pseudomonas avenae 12, 17 [Pseudomonas] cattleyae Pseudornonas cattleyae 13, 17 [Pseudomonas pseudoalcaligenes] subsp. citrulli Pseudomonas pseudoalcaligenes subsp. citrulli 13, 17 [Pseudomonas pseudoalcaligenes] subsp. konjaci Pseudomonas pseudoalcaligenes subsp. konjaci 17 [Pseudornonas] rubrilineans Pseudomonas rubrilineans 13, 17 “[Pseudomonas]setariae” “Pseudomonas setariae” 13, 17 Variovorax paradoxus Alcaligenes paradoxus This paper Xylophilus ampelinus Xanthomonas ampelina 35 a Only species whose type strains belong to the Comumonudaceae or unidentified separate groups of bacteria are listed. In addition, individual strains erroneously assigned to Pseudomonas ulcaligenes, Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes, Bordetella bronchiseptica, and Alcaligenes denitrifcans also belong to various taxa in the Comamonadaceae. Brackets indicate taxa that are misnamed according to phylogenetic data. ‘ Group originally named by E. Falsen (Culture Collection, University of Goteborg, Goteborg, Sweden) and delineated by using immunotyping and phenotypic analyses (18). comes increasingly difficult because of the variety of pheno- below. The two biotypes that were described previously in types included in, for example, families and higher groups. this group (6) differed in their ability to grow autotrophically At such levels of classification, genotypic features are indis- in the presence of H,, but were highly related according to pensable for defining and distinguishing taxa. the results of an auxanographic analysis (21) when API The internal taxonomy of the Comamonadaceae was 50CH, API 50A0, and API 50AA galleries (API System studied in detail by using several techniques, including S.A., Montalieu-Vercieu, France) were used. DNA-rRNA and DNA-DNA hybridizations, gel electropho- The second group containing taxa that should be renamed resis of total cell proteins, numerical analysis of morpholog- is the [Pseudomonas] avenae rRNA branch (17), which ical, auxanographic, and biochemical characteristics, immu- includes several phytopathogenic [Pseudomonas] species notyping, and fatty acid analysis. On the basis of the data (see Table 1). We have studied these species in detail by obtained an improved classification has been proposed for using several techniques and will propose an improved several genera, including Comamonas (14, 31, 36), Xyfo- classification in a forthcoming paper (17). phifus (33, Hydrogenophaga (32), and Acidovorax (33). Seven [Aquaspiriffum] species (see Table 1) also belong to At present several rRNA branches belonging to the aci- the Comamonadaceae. They are only distantly related to dovorans rRNA complex contain taxa that are still to be Aquaspiriffum serpens and should in fact be removed from renamed on phylogenetic grounds. One is the [Afcafigenes] this genus (28). They have not yet been given
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Anti-Staphylococcal Activity of Variovorax Paradoxus EPS
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 9-2017 Anti-Staphylococcal Activity of Variovorax paradoxus EPS Patricia Holt-Torres Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Microbiology Commons Recommended Citation Holt-Torres, Patricia, "Anti-Staphylococcal Activity of Variovorax paradoxus EPS" (2017). Electronic Theses, Projects, and Dissertations. 584. https://scholarworks.lib.csusb.edu/etd/584 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. 0 Anti-Staphylococcal Activity of Variovorax paradoxus EPS A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Patricia S. Holt-Torres September 2017 1 2 Table of Contents Page number Introduction 4 Evolution of Antibiotics and Antibiotic Resistance 4 in environmental and soil bacteria Antibiotic Classes and Mechanisms 4 Antimicrobial Resistance 6 Methicillin-Resistant Staphylococcus aureus (MRSA) 8 Novel antibiotics 10 Non-ribosomal peptide synthetases 10 Variovorax paradoxus EPS 11 Hypothesis 13 Methods and materials 14 Media and Culture Conditions 14 T-streak method to determine anti-staphylococcal activity 14 RNA extraction of Wild Type V. paradoxus EPS 15 Reverse Transcription of Wild type V. paradoxus EPS 16 Expression analysis of anti-staphylococcal activity of 16 Variovorax paradoxus EPS Quantitative analysis of anti-staphylococcal activity 17 Embedded S.
    [Show full text]
  • Comamonas: Relationship to Aquaspirillum Aquaticum, E
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 427-444 Vol. 41, No. 3 0020-7713/91/030427- 18$02 .OO/O Copyright 0 1991, International Union of Microbiological Societies Polyphasic Taxonomic Study of the Emended Genus Comamonas: Relationship to Aquaspirillum aquaticum, E. Falsen Group 10, and Other Clinical Isolates A. WILLEMS,l B. POT,l E. FALSEN,2 P. VANDAMME,' M. GILLIS,l* K. KERSTERS,l AND J. DE LEY' Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, B-9000 Ghent, Belgium, and Culture Collection, Department of Clinical Bacteriology, University of Goteborg, S-413 46 Goteborg, Sweden2 We used DNA-rRNA hybridization, DNA base composition, polyacrylamide gel electrophoresis of whole-cell proteins, DNA-DNA hybridization, numerical analysis of phenotypic features, and immunotyping to study the taxonomy of the genus Comamonas. The relationships of this genus to Aquaspirillum aquaticum and a group of clinical isolates (E. Falsen group 10 [EF lo]) were studied. Our DNA and rRNA hybridization results indicate that the genus Comamonas consists of at least the following five genotypic groups: (i) Comamonas acidovoruns, (ii) Comamonas fesfosferoni,(iii) Comamonas ferrigena, (iv) A. aquaticum and a number of EF 10 strains, and (v) other EF 10 strains, several unnamed clinical isolates, and some misnamed strains of Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes. The existence of these five groups was confirmed by the results of immunotyping and protein gel electrophoresis. A numerical analysis of morpho- logical, auxanographic, and biochemical data for the same organisms revealed the existence of three large phena. Two of these phena (C. acidovorans and C. tesfosferoni)correspond to two of the genotypic groups.
    [Show full text]
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Enrichment of Beneficial Cucumber Rhizosphere Microbes Mediated By
    Wen et al. Horticulture Research (2020) 7:154 Horticulture Research https://doi.org/10.1038/s41438-020-00380-3 www.nature.com/hortres ARTICLE Open Access Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion Tao Wen1,JunYuan1, Xiaoming He2,YueLin2,QiweiHuang1 andQirongShen 1 Abstract Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine- learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be “cultured” by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids.
    [Show full text]
  • Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
    Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output
    [Show full text]
  • Anti-Bacterial Effects of Mno2 on the Enrichment of Manganese
    Microbes Environ. 35(4), 2020 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME20052 Anti-bacterial Effects of MnO2 on the Enrichment of Manganese-oxidizing Bacteria in Downflow Hanging Sponge Reactors Shuji Matsushita1,2, Takafumi Hiroe1, Hiromi Kambara1, Ahmad Shoiful1,3, Yoshiteru Aoi4, Tomonori Kindaichi1, Noriatsu Ozaki1, Hiroyuki Imachi5, and Akiyoshi Ohashi1* 1Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1–4–1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; 2Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 2–10–1, Aga-minami, Kure, Hiroshima 737–0004, Japan; 3Center of Technology for the Environment, Agency for the Assessment and Application of Technology, Geostech Building, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Indonesia; 4Environmental Microbiology Laboratory, Graduate School of Advance Sciences of Matter, Hiroshima University, 2–313, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; and 5Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology, Yokosuka, Kanagawa 237–0061, Japan (Received April 26, 2020—Accepted August 2, 2020—Published online September 19, 2020) We focused on the use of abiotic MnO2 to develop reactors for enriching manganese-oxidizing bacteria (MnOB), which may then be used to treat harmful heavy metal-containing wastewater and in the recovery of useful minor metals. Downflow hanging sponge (DHS) reactors were used under aerobic and open conditions to investigate the potential for MnOB enrichment. The results of an experiment that required a continuous supply of organic feed solution containing Mn(II) demonstrated that MnOB enrichment and Mn(II) removal were unsuccessful in the DHS reactor when plain sponge cubes were used.
    [Show full text]
  • Breast Milk Microbiota: a Review of the Factors That Influence Composition
    Published in "Journal of Infection 81(1): 17–47, 2020" which should be cited to refer to this work. ✩ Breast milk microbiota: A review of the factors that influence composition ∗ Petra Zimmermann a,b,c,d, , Nigel Curtis b,c,d a Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland b Department of Paediatrics, The University of Melbourne, Parkville, Australia c Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia d Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia s u m m a r y Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have Keywords: investigated the composition of the breast milk microbiota and factors that might influence it. Microbiome We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies Diversity reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maxi- Delivery mum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, Caesarean 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, ar- GBS chaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococ- Antibiotics cus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, BMI Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery Probiotics mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, Smoking Diet HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota.
    [Show full text]
  • Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: a Bonanza for Bioremediation?
    microorganisms Article Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: A Bonanza for Bioremediation? 1,2 3 3 1 1, Zahid Hassan , Munawar Sultana , Sirajul I. Khan , Martin Braster , Wilfred F.M. Röling y and Hans V. Westerhoff 1,4,5,* 1 Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands 2 Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh 3 Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh 4 Manchester Centre for Integrative Systems Biology (MCISB), School of Chemical Engineering and Analytical Sciences (SCEAS), the University of Manchester, Manchester M13 9PL, UK 5 Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands * Correspondence: h.v.westerhoff@vu.nl; Tel.: +31-205-987-230 Deceased 25 September 2015. y Received: 18 June 2019; Accepted: 31 July 2019; Published: 8 August 2019 Abstract: Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found transfer-persistent arsenite oxidation activity under four conditions (aerobic/anaerobic; heterotrophic/autotrophic). This suggests that biological decontamination may help ameliorate the problem. The enriched microbial communities were phylogenetically at least as diverse as the unenriched communities: they contained a bonanza of 16S rRNA gene sequences. These related to Hydrogenophaga, Acinetobacter, Dechloromonas, Comamonas, and Rhizobium/Agrobacterium species. In addition, the enriched microbiomes contained genes highly similar to the arsenite oxidase (aioA) gene of chemolithoautotrophic (e.g., Paracoccus sp.
    [Show full text]
  • Lifestyle Preferences Drive the Structure and Diversity of Bacterial and Archaeal Communities in a Small Riverine Reservoir
    www.nature.com/scientificreports OPEN Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir Carles Borrego1,2, Sergi Sabater1,3* & Lorenzo Proia1,4 Spatial heterogeneity along river networks is interrupted by dams, afecting the transport, processing, and storage of organic matter, as well as the distribution of biota. We here investigated the structure of planktonic (free-living, FL), particle-attached (PA) and sediment-associated (SD) bacterial and archaeal communities within a small reservoir. We combined targeted-amplicon sequencing of bacterial and archaeal 16S rRNA genes in the DNA and RNA community fractions from FL, PA and SD, followed by imputed functional metagenomics, in order to unveil diferences in their potential metabolic capabilities within the reservoir (tail, mid, and dam sections) and lifestyles (FL, PA, SD). Both bacterial and archaeal communities were structured according to their life-style preferences rather than to their location in the reservoir. Bacterial communities were richer and more diverse when attached to particles or inhabiting the sediment, while Archaea showed an opposing trend. Diferences between PA and FL bacterial communities were consistent at functional level, the PA community showing higher potential capacity to degrade complex carbohydrates, aromatic compounds, and proteinaceous materials. Our results stressed that particle-attached prokaryotes were phylogenetically and metabolically distinct from their free-living counterparts, and that performed as hotspots for organic matter processing within the small reservoir. Spatial heterogeneity of river networks results from the sequence of lotic segments—which promote the transport and quick transformation of materials—and lentic segments such as large pools and wetlands—which mostly contribute to the process and storage of organic matter 1,2.
    [Show full text]
  • Short Communication Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments
    Microbes Environ. Vol. 33, No. 3, 332-335, 2018 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18033 Short Communication Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments TOMOHIRO MOROHOSHI1*, TAISHIRO OI1, HARUNA AISO2, TOMOHIRO SUZUKI2, TETSUO OKURA3, and SHUNSUKE SATO4 1Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7–1–2 Yoto, Utsunomiya, Tochigi 321–8585, Japan; 2Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321–8505, Japan; 3Process Development Research Laboratories, Plastics Molding and Processing Technology Development Group, Kaneka Corporation, 5–1–1, Torikai-Nishi, Settsu, Osaka 556–0072, Japan; and 4Health Care Solutions Research Institute Biotechnology Development Laboratories, Kaneka Corporation, 1–8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676–8688, Japan (Received March 5, 2018—Accepted May 28, 2018—Published online August 28, 2018) We investigated biofilm formation on biodegradable plastics in freshwater samples. Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) (PHBH) was covered by a biofilm after an incubation in freshwater samples. A next generation sequencing analysis of the bacterial communities of biofilms that formed on PHBH films revealed the dominance of the order Burkholderiales. Furthermore, Acidovorax and Undibacterium were the predominant genera in most biofilms. Twenty-five out of 28 PHBH-degrading
    [Show full text]
  • Comamonas Kerstersii Bacteremia in a Patient with Acute Perforated
    ® Clinical Case Report Medicine OPEN Comamonas kerstersii bacteremia in a patient with acute perforated appendicitis A rare case report ∗ Yun-heng Zhou, PhDa, Hong-xia Ma, MDb, Zhao-yang Dong, PhDc, Mei-hua Shen, PhDd, Abstract Rationale: Comamonas species are rarely associated with human infections. Recent reports found that Comamonas kerstersii was associated with severe diseases such as abdominal infection and bacteremia. However, C. kerstersii maybe be confused with Comamonas testosteroni using the automatic bacterial identification systems currently available. Patient concerns: A 31-year-old man who had onset of left upper abdominal pain developed clinical manifestations of right lower abdominal pain and classic migration of pain at the temperature of 39°C. The positive strain of aerobic and anaerobic bottles of blood cultures was identified. Diagnoses: The patient was diagnosed as acute peritonitis and perforated appendix with abdominal abscess. Interventions: The bacterium was identified by routine methods, MALDI-TOF-MS and PCR amplification of the 16S rRNA. The patient was treated with exploratory laparotomy, appendectomy, tube drainage, and prescribing antibiotic treatment. Outcomes: The patients were discharged with complete recovery. The organisms were confirmed as C. kerstersii by MALDI-TOF- MS and a combination of the other results. Lessons: Our findings suggest that C. kerstersii infection occurs most often in association with perforated appendix and bacteremia. We presume that C. kerstersii is an opportunistic pathogen or commensal with the digestive tract and appendix bacteria. Abbreviations: C. kerstersii = Comamonas kerstersii, MALDI-TOF-MS = matrix-assisted laser desorption ionization–time of flight mass spectrometry, MIC = minimum inhibitory concentration, PCR = polymerase chain reaction.
    [Show full text]