Measure Theory and Integration

Total Page:16

File Type:pdf, Size:1020Kb

Measure Theory and Integration THEORY OF MEASURE AND INTEGRATION TOMASZ KOMOROWSKI 1. Abstract theory of measure and integration 1.1. Notions of σ-algebra and measurability. Suppose that X is a certain set. A family A of subsets of X is called a σ-algebra if i) ; 2 A, ii) if A 2 A then Ac := X n A 2 A, S+1 iii) if A1;A2;::: 2 A then i=1 Ai 2 A. Example 1. The family P(X) of all subsets of a given set X. Example 2. Suppose that A1;A2;::: is a partition of a set X, i.e. Ai \ Aj = ; if S+1 S i 6= i and j=1 Aj = X. Denote by A the family of all sets of the form j2Z Aj, where Z ⊂ f1; 2;:::g. Prove that A forms a σ-algebra. Example 3. Suppose that X is a topological space. Denote by T the family of all open subsets (topology). Then, introduce \ B(X) := A; where the intersection is over all σ-algebras A containing T . It is a σ-algebra and called the Borel σ-algebra. A pair (X; A) is called a measurable space. Any subset A of X that belongs to A is called measurable. A function f : X ! R¯ := R [ {−∞; +1g is measurable if [f(x) < a] belongs to A for any a 2 R. 1 2 TOMASZ KOMOROWSKI Conventions concerning symbols +1 and −∞. The following conventions shall be used throughout this lecture (1.1) 0 · 1 = 1 · 0 = 0; (1.2) x + 1 = +1; 8 x 2 R (1.3) x − 1 = −∞; 8 x 2 R x · (+1) = +1; 8 x 2 (0; +1)(1.4) x · (−∞) = −∞; 8 x 2 (0; +1)(1.5) x · (+1) = −∞; 8 x 2 (−∞; 0)(1.6) x · (−∞) = +1; 8 x 2 (−∞; −)(1.7) (1.8) ±∞ · ±∞ = +1; ±∞ · ∓∞ = −∞: Warning: The operation +1 − 1 is not defined! Exercise 1. Suppose that f; g : X ! R are measurable then 1)[ f(x)(<) ≤ a], [f(x) > (≥)a] are measurable, 2)[ f(x) < g(x)], [f(x) ≤ g(x)], [f(x) = g(x)] are measurable, 3) f + g, fg are measurable, 4) if g 6= 0 then f=g is measurable, 5) if a 2 R then af is measurable. ¯ Exercise 2. Suppose that fn : X ! R are measurable for any n ≥ 1, then 1) infffn; n ≥ 1g is measurable, 2) supffn; n ≥ 1g is measurable, 3) lim infn!+1 fn and lim supn!+1 fn are measurable, 4) the set Z on which limn!+1 fn exists is measurable, 5) if Z = X then limn!+1 fn is measurable. A function ( 1; x 2 A; 1 (x) = A 0; x 62 A: is called a characteristic function of A. Proposition 1.1. A characteristic function of A is measurable iff A is measurable. MEASURE AND INTEGRATION 3 A function f : X ! R is called simple if there exist a finite number of values c1; : : : ; cN 2 R and a partition fA1;:::;AN g of X such that each Ai is measurable and N X f = ci1Ai : i=1 Denote by Π(X) the class of all simple functions on X and by Π+(X) the subclass of all non-negative simple functions. Proposition 1.2. Suppose that f : X ! [0; +1] is measurable. Then, there exists a sequence (fn) ⊂ Π+(X) such that fn ≤ fn+1, n ≥ 1 and f(x) = lim fn(x); for any x 2 X: n!+1 Proof. Fix n ≥ 1 and define i i + 1 A = x : ≤ f(x) < ; i = 0; : : : ; n2n − 1 n;i 2n 2n and An;n2n = [x : n ≤ f(x)] : Let n2n X i f (x) := 1 : n 2n An;i i=0 n It is clear that x 2 An;i is equivalent with x 2 An+1;2i [ An+1;2i+1 for i = 0; : : : ; n2 − 1. n When x 2 An+1;2i, i = 0; : : : ; n2 − 1 then fn(x) = fn+1(x). In the case when x 2 An+1;2i+1 we have fn(x) < fn+1(x). Condition x 2 An;n2n is equivalent with 2n+1(n+1) [ x 2 An+1;j: j=2n+1n Observe that according to the definition j f (x) = ≥ n = f (x); for x 2 A ; j = 2n+1n; : : : 2n+1(n + 1): n+1 2n+1 n n+1;j Therefore fn(x) = n ≤ fn+1(x) for x 2 An;n2n . Note that 1 jf(x) − f (x)j ≤ ; when f(x) < n: n 2n This allows us to conclude that lim fn(x) = f(x); when f(x) < +1: n!+1 4 TOMASZ KOMOROWSKI If, however f(x) = +1, then n ≤ fn(x); 8 n ≥ 1 and the conclusion of the proposition also holds. 1.2. Definition of a measure. We start with the following definition: Suppose that (X; A) is a measurable space. A function µ : A! [0; +1] is called a measure if i) µ(;) = 0, ii) if A1;A2;::: is a family of sets from A that are pairwise disjoint, i.e. Ai\Aj = ; for i 6= j then +1 ! +1 [ X µ Ai = µ(Ai): i=1 i=1 Terminology: 1) the triple (X; A; µ) is called a measure space, 2) when µ(X) < +1 the measure is called finite, otherwise it is infinite. A measure is called σ-finite, when either it is finite, or in case it is inifnite, there exists a family X1 ⊂ X2 ⊂ ::: of measurable subsets such that +1 [ X = Xi i=1 and µ(Xi) < +1 for all i = 1; 2;::: 3) when µ(X) = 1 the measure is called a probability measure, the respective triple (X; A; µ) is called a probability space. 4) if the target set [0; +1] in the definition of a measure is replaced by (−∞; +1], or [−∞; +1) then µ is called a signed measure (a σ-additive set function or charged measure, or simply a charge). Example 1. Suppose that X0 is a subset of X. Let A := P(X). Define a measure: µ(A) := card(A \ X0);A 2 P(X); where card(A) stands for the cardinality of set A. A set A 2 A is called an atom for a measure µ if µ(A) > 0 and for any A1;A2 2 A such that A = A1 [ A2 and A1 \ A2 = ; we have either µ(A1) = 0, or µ(A2) = 0. MEASURE AND INTEGRATION 5 Note that any point from X0 in case of the measure defined in Example 1 is an atom of mass 1. In the particular case X0 = fx0g the respective measure is denoted by δx0 and it is called Dirac's delta measure. It can be written as δx0 (A) = 1A(x0); 8 A 2 P(X): Example 2. Suppose that X0 is countable and f : X0 ! [0; +1]. Define a measure: X µ(A) := f(x);A 2 P(X): x2A\X0 Example 3. Suppose that A1;A2;::: is a partition of a set X and A is the σ-algebra S of the unions j2Z Aj; where Z ⊂ f1; 2;:::g. Suppose that f : N ! [0; +1]. Let ! [ X µ Aj := f(j): j2Z j2Z It is a measure. A measure µ is called atomless if it has no atoms. 1.3. Some elementary properties of a measure. The following properties of measures shall be useful in the sequel. Proposition 1.3. Suppose that (X; A; µ) is a measure space. Then, 1) if A; B 2 A and B ⊂ A then, µ(A) ≥ µ(B), S+1 2) if A = n=1 An and A1 ⊂ A2 ⊂ ::: then, µ(A) = lim µ(An); n!+1 T+1 3) if A = n=1 An and A1 ⊃ A2 ⊃ ::: and µ(A1) < +1 then, µ(A) = lim µ(An); n!+1 4) if A1;A2;::: is a family of sets from A then, +1 ! +1 [ X µ Ai ≤ µ(Ai): i=1 i=1 Proof. Part 1). Note that A = B [ (A n B), where B and A n B are disjoint. Therefore µ(A) = µ(B [ (A n B)) = µ(B) + µ(A n B) ≥ µ(B): 6 TOMASZ KOMOROWSKI Part 2). Note that +1 [ A = Bn; n=1 where B1 = A1 and Bn+1 := An+1 n An; 8 n ≥ 1: Note that (Bn) are pairwise disjoint and n [ (1.9) An = Bj; j=1 and +1 [ (1.10) A = Bj: j=1 Therefore n X µ(An) = µ(Bj): j=1 and +1 n X X µ(A) = µ(Bj) = lim µ(Bj) = lim µ(An): n!+1 n!+1 j=1 j=1 Part 3). Note that +1 [ A1 n A = (A1 n An) n=1 and A1 n A1 ⊂ (A1 n A2) ⊂ :::. From the (proven) part 1) we have (1.11) µ(A1 n A) = lim µ(A1 n An): n!+1 However, since for each n ≥ 1 we have A1 = (A1 n An) [ An and (A1 n An) \ An = ; we can write µ(A1) = µ(A1 n An) + µ(An) and because µ(An) < +1 we have µ(A1 n An) = µ(A1) − µ(An): By the same token µ(A1 n A) = µ(A1) − µ(A): Combining the above with (1.11) we get µ(A1) − µ(A) = µ(A1) − lim µ(An) n!+1 MEASURE AND INTEGRATION 7 and the conclusion of this part follows because µ(A1) < +1. Part 4). Let +1 [ A := Ai: i=1 Note that +1 [ A = Bi; i=1 where B1 := A1;Bn := An n (A1 [ ::: [ An−1); n ≥ 2: Since the sets (Bn) are pairwise disjoint and Bn ⊂ An we can write +1 +1 X X µ(A) = µ(Bi) ≤ µ(Ai): i=1 i=1 Example 1.
Recommended publications
  • Math Preliminaries
    Preliminaries We establish here a few notational conventions used throughout the text. Arithmetic with ∞ We shall sometimes use the symbols “∞” and “−∞” in simple arithmetic expressions involving real numbers. The interpretation given to such ex- pressions is the usual, natural one; for example, for all real numbers x, we have −∞ < x < ∞, x + ∞ = ∞, x − ∞ = −∞, ∞ + ∞ = ∞, and (−∞) + (−∞) = −∞. Some such expressions have no sensible interpreta- tion (e.g., ∞ − ∞). Logarithms and exponentials We denote by log x the natural logarithm of x. The logarithm of x to the base b is denoted logb x. We denote by ex the usual exponential function, where e ≈ 2.71828 is the base of the natural logarithm. We may also write exp[x] instead of ex. Sets and relations We use the symbol ∅ to denote the empty set. For two sets A, B, we use the notation A ⊆ B to mean that A is a subset of B (with A possibly equal to B), and the notation A ( B to mean that A is a proper subset of B (i.e., A ⊆ B but A 6= B); further, A ∪ B denotes the union of A and B, A ∩ B the intersection of A and B, and A \ B the set of all elements of A that are not in B. For sets S1,...,Sn, we denote by S1 × · · · × Sn the Cartesian product xiv Preliminaries xv of S1,...,Sn, that is, the set of all n-tuples (a1, . , an), where ai ∈ Si for i = 1, . , n. We use the notation S×n to denote the Cartesian product of n copies of a set S, and for x ∈ S, we denote by x×n the element of S×n consisting of n copies of x.
    [Show full text]
  • Version of 21.8.15 Chapter 43 Topologies and Measures II The
    Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces.
    [Show full text]
  • Sets, Functions
    Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: • real numbers, • complex numbers, C • integers, • All students in our class Defining Sets Sets can be defined directly: e.g. {1,2,4,8,16,32,…}, {CSC1130,CSC2110,…} Order, number of occurence are not important. e.g. {A,B,C} = {C,B,A} = {A,A,B,C,B} A set can be an element of another set. {1,{2},{3,{4}}} Defining Sets by Predicates The set of elements, x, in A such that P(x) is true. {}x APx| ( ) The set of prime numbers: Commonly Used Sets • N = {0, 1, 2, 3, …}, the set of natural numbers • Z = {…, -2, -1, 0, 1, 2, …}, the set of integers • Z+ = {1, 2, 3, …}, the set of positive integers • Q = {p/q | p Z, q Z, and q ≠ 0}, the set of rational numbers • R, the set of real numbers Special Sets • Empty Set (null set): a set that has no elements, denoted by ф or {}. • Example: The set of all positive integers that are greater than their squares is an empty set. • Singleton set: a set with one element • Compare: ф and {ф} – Ф: an empty set. Think of this as an empty folder – {ф}: a set with one element. The element is an empty set. Think of this as an folder with an empty folder in it. Venn Diagrams • Represent sets graphically • The universal set U, which contains all the objects under consideration, is represented by a rectangle.
    [Show full text]
  • The Structure of the 3-Separations of 3-Connected Matroids
    THE STRUCTURE OF THE 3{SEPARATIONS OF 3{CONNECTED MATROIDS JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE Abstract. Tutte defined a k{separation of a matroid M to be a partition (A; B) of the ground set of M such that |A|; |B|≥k and r(A)+r(B) − r(M) <k. If, for all m<n, the matroid M has no m{separations, then M is n{connected. Earlier, Whitney showed that (A; B) is a 1{separation of M if and only if A is a union of 2{connected components of M.WhenM is 2{connected, Cunningham and Edmonds gave a tree decomposition of M that displays all of its 2{separations. When M is 3{connected, this paper describes a tree decomposition of M that displays, up to a certain natural equivalence, all non-trivial 3{ separations of M. 1. Introduction One of Tutte’s many important contributions to matroid theory was the introduction of the general theory of separations and connectivity [10] de- fined in the abstract. The structure of the 1–separations in a matroid is elementary. They induce a partition of the ground set which in turn induces a decomposition of the matroid into 2–connected components [11]. Cun- ningham and Edmonds [1] considered the structure of 2–separations in a matroid. They showed that a 2–connected matroid M can be decomposed into a set of 3–connected matroids with the property that M can be built from these 3–connected matroids via a canonical operation known as 2–sum. Moreover, there is a labelled tree that gives a precise description of the way that M is built from the 3–connected pieces.
    [Show full text]
  • MARSTRAND's THEOREM and TANGENT MEASURES Contents 1
    MARSTRAND'S THEOREM AND TANGENT MEASURES ALEKSANDER SKENDERI Abstract. This paper aims to prove and motivate Marstrand's theorem, which is a fundamental result in geometric measure theory. Along the way, we introduce and motivate the notion of tangent measures, while also proving several related results. The paper assumes familiarity with the rudiments of measure theory such as Lebesgue measure, Lebesgue integration, and the basic convergence theorems. Contents 1. Introduction 1 2. Preliminaries on Measure Theory 2 2.1. Weak Convergence of Measures 2 2.2. Differentiation of Measures and Covering Theorems 3 2.3. Hausdorff Measure and Densities 4 3. Marstrand's Theorem 5 3.1. Tangent measures and uniform measures 5 3.2. Proving Marstrand's Theorem 8 Acknowledgments 16 References 16 1. Introduction Some of the most important objects in all of mathematics are smooth manifolds. Indeed, they occupy a central position in differential geometry, algebraic topology, and are often very important when relating mathematics to physics. However, there are also many objects of interest which may not be differentiable over certain sets of points in their domains. Therefore, we want to study more general objects than smooth manifolds; these objects are known as rectifiable sets. The following definitions and theorems require the notion of Hausdorff measure. If the reader is unfamiliar with Hausdorff measure, he should consult definition 2.10 of section 2.3 before continuing to read this section. Definition 1.1. A k-dimensional Borel set E ⊂ Rn is called rectifiable if there 1 k exists a countable family fΓigi=1 of Lipschitz graphs such that H (E n [ Γi) = 0.
    [Show full text]
  • Matroids with Nine Elements
    Matroids with nine elements Dillon Mayhew School of Mathematics, Statistics & Computer Science Victoria University Wellington, New Zealand [email protected] Gordon F. Royle School of Computer Science & Software Engineering University of Western Australia Perth, Australia [email protected] February 2, 2008 Abstract We describe the computation of a catalogue containing all matroids with up to nine elements, and present some fundamental data arising from this cataogue. Our computation confirms and extends the results obtained in the 1960s by Blackburn, Crapo & Higgs. The matroids and associated data are stored in an online database, arXiv:math/0702316v1 [math.CO] 12 Feb 2007 and we give three short examples of the use of this database. 1 Introduction In the late 1960s, Blackburn, Crapo & Higgs published a technical report describing the results of a computer search for all simple matroids on up to eight elements (although the resulting paper [2] did not appear until 1973). In both the report and the paper they said 1 “It is unlikely that a complete tabulation of 9-point geometries will be either feasible or desirable, as there will be many thousands of them. The recursion g(9) = g(8)3/2 predicts 29260.” Perhaps this comment dissuaded later researchers in matroid theory, because their cata- logue remained unextended for more than 30 years, which surely makes it one of the longest standing computational results in combinatorics. However, in this paper we demonstrate that they were in fact unduly pessimistic, and describe an orderly algorithm (see McKay [7] and Royle [11]) that confirms their computations and extends them by determining the 383172 pairwise non-isomorphic matroids on nine elements (see Table 1).
    [Show full text]
  • Section 3: Equivalence Relations
    10.3.1 Section 3: Equivalence Relations • Definition: Let R be a binary relation on A. R is an equivalence relation on A if R is reflexive, symmetric, and transitive. • From the last section, we demonstrated that Equality on the Real Numbers and Congruence Modulo p on the Integers were reflexive, symmetric, and transitive, so we can describe them as equivalence relations. 10.3.2 Examples • What is the “smallest” equivalence relation on a set A? R = {(a,a) | a Î A}, so that n(R) = n(A). • What is the “largest” equivalence relation on a set A? R = A ´ A, so that n(R) = [n(A)]2. Equivalence Classes 10.3.3 • Definition: If R is an equivalence relation on a set A, and a Î A, then the equivalence class of a is defined to be: [a] = {b Î A | (a,b) Î R}. • In other words, [a] is the set of all elements which relate to a by R. • For example: If R is congruence mod 5, then [3] = {..., -12, -7, -2, 3, 8, 13, 18, ...}. • Another example: If R is equality on Q, then [2/3] = {2/3, 4/6, 6/9, 8/12, 10/15, ...}. • Observation: If b Î [a], then [b] = [a]. 10.3.4 A String Example • Let S = {0,1} and denote L(s) = length of s, for any string s Î S*. Consider the relation: R = {(s,t) | s,t Î S* and L(s) = L(t)} • R is an equivalence relation. Why? • REF: For all s Î S*, L(s) = L(s); SYM: If L(s) = L(t), then L(t) = L(s); TRAN: If L(s) = L(t) and L(t) = L(u), L(s) = L(u).
    [Show full text]
  • Parity Systems and the Delta-Matroid Intersection Problem
    Parity Systems and the Delta-Matroid Intersection Problem Andr´eBouchet ∗ and Bill Jackson † Submitted: February 16, 1998; Accepted: September 3, 1999. Abstract We consider the problem of determining when two delta-matroids on the same ground-set have a common base. Our approach is to adapt the theory of matchings in 2-polymatroids developed by Lov´asz to a new abstract system, which we call a parity system. Examples of parity systems may be obtained by combining either, two delta- matroids, or two orthogonal 2-polymatroids, on the same ground-sets. We show that many of the results of Lov´aszconcerning ‘double flowers’ and ‘projections’ carry over to parity systems. 1 Introduction: the delta-matroid intersec- tion problem A delta-matroid is a pair (V, ) with a finite set V and a nonempty collection of subsets of V , called theBfeasible sets or bases, satisfying the following axiom:B ∗D´epartement d’informatique, Universit´edu Maine, 72017 Le Mans Cedex, France. [email protected] †Department of Mathematical and Computing Sciences, Goldsmiths’ College, London SE14 6NW, England. [email protected] 1 the electronic journal of combinatorics 7 (2000), #R14 2 1.1 For B1 and B2 in and v1 in B1∆B2, there is v2 in B1∆B2 such that B B1∆ v1, v2 belongs to . { } B Here P ∆Q = (P Q) (Q P ) is the symmetric difference of two subsets P and Q of V . If X\ is a∪ subset\ of V and if we set ∆X = B∆X : B , then we note that (V, ∆X) is a new delta-matroid.B The{ transformation∈ B} (V, ) (V, ∆X) is calledB a twisting.
    [Show full text]
  • Computing Partitions Within SQL Queries: a Dead End? Frédéric Dumonceaux, Guillaume Raschia, Marc Gelgon
    Computing Partitions within SQL Queries: A Dead End? Frédéric Dumonceaux, Guillaume Raschia, Marc Gelgon To cite this version: Frédéric Dumonceaux, Guillaume Raschia, Marc Gelgon. Computing Partitions within SQL Queries: A Dead End?. 2013. hal-00768156 HAL Id: hal-00768156 https://hal.archives-ouvertes.fr/hal-00768156 Submitted on 20 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computing Partitions within SQL Queries: A Dead End? Fr´ed´eric Dumonceaux – Guillaume Raschia – Marc Gelgon December 20, 2012 Abstract The primary goal of relational databases is to provide efficient query processing on sets of tuples and thereafter, query evaluation and optimization strategies are a key issue in database implementation. Producing universally fast execu- tion plans remains a challenging task since the underlying relational model has a significant impact on algebraic definition of the operators, thereby on their implementation in terms of space and time complexity. At least, it should pre- vent a quadratic behavior in order to consider scaling-up towards the processing of large datasets. The main purpose of this paper is to show that there is no trivial relational modeling for managing collections of partitions (i.e.
    [Show full text]
  • Nonlinear Structures Determined by Measures on Banach Spaces Mémoires De La S
    MÉMOIRES DE LA S. M. F. K. DAVID ELWORTHY Nonlinear structures determined by measures on Banach spaces Mémoires de la S. M. F., tome 46 (1976), p. 121-130 <http://www.numdam.org/item?id=MSMF_1976__46__121_0> © Mémoires de la S. M. F., 1976, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journees Geom. dimens. infinie [1975 - LYON ] 121 Bull. Soc. math. France, Memoire 46, 1976, p. 121 - 130. NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES By K. David ELWORTHY 0. INTRODUCTION. A. A Gaussian measure y on a separable Banach space E, together with the topolcT- gical vector space structure of E, determines a continuous linear injection i : H -> E, of a Hilbert space H, such that y is induced by the canonical cylinder set measure of H. Although the image of H has measure zero, nevertheless H plays a dominant role in both linear and nonlinear analysis involving y, [ 8] , [9], [10] . The most direct approach to obtaining measures on a Banach manifold M, related to its differential structure, requires a lot of extra structure on the manifold : for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M which has the structure of a Hilbert manifold, [6] , [7].
    [Show full text]
  • Partial Ordering Relations • a Relation Is Said to Be a Partial Ordering Relation If It Is Reflexive, Anti -Symmetric, and Transitive
    Relations Chang-Gun Lee ([email protected]) Assistant Professor The School of Computer Science and Engineering Seoul National University Relations • The concept of relations is also commonly used in computer science – two of the programs are related if they share some common data and are not related otherwise. – two wireless nodes are related if they interfere each other and are not related otherwise – In a database, two objects are related if their secondary key values are the same • What is the mathematical definition of a relation? • Definition 13.1 (Relation): A relation is a set of ordered pairs – The set of ordered pairs is a complete listing of all pairs of objects that “satisfy” the relation •Examples: – Greater Than Re lat ion = {(2 {(21)(31)(32),1), (3,1), (3,2), ...... } – R = {(1,2), (1,3), (3,0)} (1,2)∈ R, 1 R 2 :"x is related by the relation R to y" Relations • Definition 13.2 (Relation on, between sets) Let R be a relation and let A and B be sets . –We say R is a relation on A provided R ⊆ A× A –We say R is a relation from A to B provided R ⊆ A× B Example Relations •Let A={1,2,3,4} and B={4,5,6,7}. Let – R={(11)(22)(33)(44)}{(1,1),(2,2),(3,3),(4,4)} – S={(1,2),(3,2)} – T={(1,4),(1,5),(4,7)} – U={(4,4),(5,2),(6,2),(7,3)}, and – V={(1,7),(7,1)} • All of these are relations – R is a relation on A.
    [Show full text]
  • Notes for Math 450 Lecture Notes 2
    Notes for Math 450 Lecture Notes 2 Renato Feres 1 Probability Spaces We first explain the basic concept of a probability space, (Ω, F,P ). This may be interpreted as an experiment with random outcomes. The set Ω is the collection of all possible outcomes of the experiment; F is a family of subsets of Ω called events; and P is a function that associates to an event its probability. These objects must satisfy certain logical requirements, which are detailed below. A random variable is a function X :Ω → S of the output of the random system. We explore some of the general implications of these abstract concepts. 1.1 Events and the basic set operations on them Any situation where the outcome is regarded as random will be referred to as an experiment, and the set of all possible outcomes of the experiment comprises its sample space, denoted by S or, at times, Ω. Each possible outcome of the experiment corresponds to a single element of S. For example, rolling a die is an experiment whose sample space is the finite set {1, 2, 3, 4, 5, 6}. The sample space for the experiment of tossing three (distinguishable) coins is {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT } where HTH indicates the ordered triple (H, T, H) in the product set {H, T }3. The delay in departure of a flight scheduled for 10:00 AM every day can be regarded as the outcome of an experiment in this abstract sense, where the sample space now may be taken to be the interval [0, ∞) of the real line.
    [Show full text]