Conditional Measures and Conditional Expectation; Rohlin’S Disintegration Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Conditional Measures and Conditional Expectation; Rohlin’S Disintegration Theorem DISCRETE AND CONTINUOUS doi:10.3934/dcds.2012.32.2565 DYNAMICAL SYSTEMS Volume 32, Number 7, July 2012 pp. 2565{2582 CONDITIONAL MEASURES AND CONDITIONAL EXPECTATION; ROHLIN'S DISINTEGRATION THEOREM David Simmons Department of Mathematics University of North Texas P.O. Box 311430 Denton, TX 76203-1430, USA Abstract. The purpose of this paper is to give a clean formulation and proof of Rohlin's Disintegration Theorem [7]. Another (possible) proof can be found in [6]. Note also that our statement of Rohlin's Disintegration Theorem (The- orem 2.1) is more general than the statement in either [7] or [6] in that X is allowed to be any universally measurable space, and Y is allowed to be any subspace of standard Borel space. Sections 1 - 4 contain the statement and proof of Rohlin's Theorem. Sec- tions 5 - 7 give a generalization of Rohlin's Theorem to the category of σ-finite measure spaces with absolutely continuous morphisms. Section 8 gives a less general but more powerful version of Rohlin's Theorem in the category of smooth measures on C1 manifolds. Section 9 is an appendix which contains proofs of facts used throughout the paper. 1. Notation. We begin with the definition of the standard concept of a system of conditional measures, also known as a disintegration: Definition 1.1. Let (X; µ) be a probability space, Y a measurable space, and π : X ! Y a measurable function. A system of conditional measures of µ with respect to (X; π; Y ) is a collection of measures (µy)y2Y such that −1 i) For each y 2 Y , µy is a measure on π (X). For µb-almost every y 2 Y , µy is a probability measure. ii) The measures (µy)y2Y satisfy the law of total probability Z µ(B) = µπ−1(y)(B)dµb(y) (1) −1 for every event B of X. (Here and throughout this paper µb := µ ◦ π .) Note that we are implicitly assuming that the map y 7! µy(B) is µb-measurable; we must be careful to prove this claim. The proof that we will give of Rohlin's disintegration theorem is probabilistic; in particular, we will use the following notations motivated by a probabilistic point of view: 2000 Mathematics Subject Classification. Primary: 28A50, 28C15; Secondary: 28C05. Key words and phrases. Disintegration, conditional measures, linear functionals, differential forms. 2565 2566 DAVID SIMMONS Notation. Let (X; µ) be a probability space, A a µ-measurable subset of X with µ(A) > 0. We write µ(B \ A) P (X 2 B X 2 A) := µ (B) := µ A µ(A) Z Eµ( (X ) X 2 A) := (x)dµA(x) To prove the existence of systems of conditional measures, we will use a related concept which depends on topology: Definition 1.2. Let (X; µ) be a topological probability space, Y a metric space, and π : X ! Y a measurable function. (π need not be continuous.) Let y 2 Y . Then the topological conditional measure of µ with respect to (X; π; y; Y ) is the weak-* limit µy := lim µπ−1(B(y;")) (2) "!0 if it exists and is supported entirely on π−1(y). (The measures on the right hand side are defined by Notation1.) This definition has the advantage of being specific: for each y 2 Y , there is at most one measure on π−1(y) which can be called the conditional probability of µ on π−1(y). Its disadvantage is that the context of the definition is less general: X is required to be a topological space and Y is required to be a metric space. We recall the following standard definitions: Definition 1.3. Standard Borel space is the Cantor space 2N with its Borel σ- algebra; the Borel isomorphism theorem states that any uncountable Polish space with its Borel σ-algebra is Borel isomorphic to standard Borel space. Definition 1.4. A universally measurable space is a measurable space X such that there is an isomorphic embedding iX of X into standard Borel space, such that for every Borel measure µ on standard Borel space, iX (X) is in the completion of µ. Definition 1.5. A metric space X is an ultrametric space if it satisfies the ultra- metric triangle inequality d(x; z) ≤ max(d(x; y); d(y; z)) for all x; y; z 2 X. 2. Statement of Rohlin's Disintegration Theorem. We will prove two ver- sions of Rohlin's Theorem; the first, which is a strengthening of the version given in [7], is an entirely measure-theoretic formulation, whereas the second, which appears to be new, involves topology. Theorems 2.1 and 2.2 correspond to Definitions 1.1 and 1.2, respectively. Theorem 2.1 (Rohlin's Disintegration Theorem). Let X be a universally measurable space, let Y be a measurable space such that there exists a measurable injective map from Y into standard Borel space, and let µ be a Borel probability measure on X. Let π : X ! Y be measurable. Then there exists a system of conditional measures (µy)y2Y of µ with respect to (X; π; Y ). They are unique in the sense that if (νy)y2Y is any other system of conditional measures, then µy = νy for µb-almost every y 2 Y . ROHLIN'S DISINTEGRATION THEOREM 2567 Theorem 2.2. Let (X; µ) be a compact metric probability space, let Y be a locally compact separable ultrametric space or a separable Riemannian manifold. Let π : X ! Y be measurable. Then for µb-almost every y 2 Y , the topological conditional measure of µ with respect to (X; π; y; Y ) exists as in Definition 1.2. Furthermore the collection of measures (µy)y2Y is a system of conditional measures as in Definition 1.1. (If µy does not exist, set µy = 0.) The proof will be divided into 2 parts: deducing Theorem 2.1 from Theorem 2.2, and proving Theorem 2.2. 3. Proof of Rohlin's Theorem: Theorem 2.2 ! Theorem 2.1. Let X0 = 2N 0 be standard Borel space, and let iX : X ! X be the inclusion guaranteed by the 0 −1 0 0 universal measurability of X. Let µ = µ ◦ iX ; µ is a probability measure on X . Then (X0; µ0) is a compact metric probability space. 0 Let iY be a measurable injective map from Y into the Cantor space Y := 2N equipped with the Borel σ-algebra. Note that Y 0 is a locally compact separable ul- trametric space. By [[8] 3.2.3 p.92], the map π admits a Borel measurable extension π0 : X0 ! Y 0. Note that there is no reason to suppose that π0 is continuous. Thus we have satisfied the hypotheses of Theorem 2.2 for (X0; µ0; π0;Y 0). (If 0 X and Y are standard Borel, we are done with existence.) Let (µy0 )y02Y 0 be a system of conditional measures of µ0 with respect to (X0; π0;Y 0). For each y 2 Y , let µ = (µ0 i (X)) ◦ (i−1)−1 if µ0 is supported on i (X), and µ = 0 y iY (y) X X iY (y) X y otherwise. Note that this makes sense since iX (X) is universally measurable. We claim that (µy)y2Y is a system of conditional measures of µ with respect to (X; π; Y ). 0 0 First, note that since π is an extension of π, then iY ◦ π = π ◦ iX , and thus 0 −1 µb = µb ◦ iY . For all y 2 Y , µ0 is a measure on (π0)−1(i (y)). If µ0 (X0 n i (X)) > 0, iY (y) Y iY (y) X then µ = 0 is a measure on π−1(y). If µ0 (X0 n i (X)) = 0, then µ = y iY (y) X y (µ0 i (X)) ◦ (i−1)−1 is a measure supported on i−1((π0)−1(i (y)) \ i (X)), iY (y) X X X Y X −1 which by the injectivity of iY is equal to π (y). Furthermore, in this case we have µ0 = µ ◦ i−1. If additionally µ0 is a probability measure, then µ is a iY (y) y X iY (y) y probability measure. 0 0 0 0 0 0 Now for µb -almost every y 2 Y , µy0 is a probability measure, and µy0 (X n 0 0 iX (X)) = 0. (The second claim follows from (1) applied to the formula µ (X n 0 iX (X)) = µ(;) = 0.) Thus for µ-almost every y 2 Y , µ is a probability b iY (y) measure, and µ0 (X0 n i (X)) = 0. By the preceding paragraph, we see that for iY (y) X −1 every y 2 Y , µy is a measure on π (y), and for µb-almost every y 2 Y , µy is a probability measure and µ0 = µ ◦ i−1. Thus condition (i) of Definition 1.1 is iY (y) y X satisfied. To prove condition (ii), fix B ⊆ X measurable. Since iX is an embedding, there 0 0 −1 0 exists B ⊆ X Borel such that B = iX (B ). Now for µb-almost every y 2 Y , −1 0 −1 0 µiY (y) = µy ◦ iX and therefore µiY (y)(B ) = µy ◦ iX (B ) = µy(B). Thus the function y 7! µy(B) is equal µb-almost everywhere to the composition of iY with the 0 0 map y 7! µy0 (B ), and is therefore µb-measurable. Finally, note that µ0(B0) = µ(B). Applying (1), we see that µ(B) = R 0 0 0 0 R 0 0 R −1 0 R µ 0 (B )dµ (y ) = µ (B )dµ(y) = µy ◦ i (B )dµ(y) = µy(B)dµ(y).
Recommended publications
  • Version of 21.8.15 Chapter 43 Topologies and Measures II The
    Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces.
    [Show full text]
  • Bayesian Push-Forward Based Inference
    Bayesian Push-forward based Inference A Consistent Bayesian Formulation for Stochastic Inverse Problems Based on Push-forward Measures T. Butler,∗ J. Jakeman,y T. Wildeyy April 4, 2017 Abstract We formulate, and present a numerical method for solving, an inverse problem for inferring parameters of a deterministic model from stochastic observational data (quantities of interest). The solution, given as a probability measure, is derived using a Bayesian updating approach for measurable maps that finds a posterior probability measure, that when propagated through the deterministic model produces a push-forward measure that exactly matches the observed prob- ability measure on the data. Our approach for finding such posterior measures, which we call consistent Bayesian inference, is simple and only requires the computation of the push-forward probability measure induced by the combination of a prior probability measure and the deter- ministic model. We establish existence and uniqueness of observation-consistent posteriors and present stability and error analysis. We also discuss the relationships between consistent Bayesian inference, classical/statistical Bayesian inference, and a recently developed measure-theoretic ap- proach for inference. Finally, analytical and numerical results are presented to highlight certain properties of the consistent Bayesian approach and the differences between this approach and the two aforementioned alternatives for inference. Keywords. stochastic inverse problems, Bayesian inference, uncertainty quantification, density estimation AMS classifications. 60H30, 60H35, 60B10 1 Introduction Inferring information about the parameters of a model from observations is a common goal in scientific modelling and engineering design. Given a simulation model, one often seeks to determine the set of possible model parameter values which produce a set of model outputs that match some set of observed arXiv:1704.00680v1 [math.NA] 3 Apr 2017 or desired values.
    [Show full text]
  • MARSTRAND's THEOREM and TANGENT MEASURES Contents 1
    MARSTRAND'S THEOREM AND TANGENT MEASURES ALEKSANDER SKENDERI Abstract. This paper aims to prove and motivate Marstrand's theorem, which is a fundamental result in geometric measure theory. Along the way, we introduce and motivate the notion of tangent measures, while also proving several related results. The paper assumes familiarity with the rudiments of measure theory such as Lebesgue measure, Lebesgue integration, and the basic convergence theorems. Contents 1. Introduction 1 2. Preliminaries on Measure Theory 2 2.1. Weak Convergence of Measures 2 2.2. Differentiation of Measures and Covering Theorems 3 2.3. Hausdorff Measure and Densities 4 3. Marstrand's Theorem 5 3.1. Tangent measures and uniform measures 5 3.2. Proving Marstrand's Theorem 8 Acknowledgments 16 References 16 1. Introduction Some of the most important objects in all of mathematics are smooth manifolds. Indeed, they occupy a central position in differential geometry, algebraic topology, and are often very important when relating mathematics to physics. However, there are also many objects of interest which may not be differentiable over certain sets of points in their domains. Therefore, we want to study more general objects than smooth manifolds; these objects are known as rectifiable sets. The following definitions and theorems require the notion of Hausdorff measure. If the reader is unfamiliar with Hausdorff measure, he should consult definition 2.10 of section 2.3 before continuing to read this section. Definition 1.1. A k-dimensional Borel set E ⊂ Rn is called rectifiable if there 1 k exists a countable family fΓigi=1 of Lipschitz graphs such that H (E n [ Γi) = 0.
    [Show full text]
  • An Abstract Disintegration Theorem
    PACIFIC JOURNAL OF MATHEMATICS Vol. 94, No. 2, 1981 AN ABSTRACT DISINTEGRATION THEOREM BENNO FUCHSSTEINER A Strassen-type disintegration theorem for convex cones with localized order structure is proved. As an example a flow theorem for infinite networks is given. Introduction* It has been observed by several authors (e.g., 191, 1101, 1131 and |14|) that the essential part of the celebrated Strassen disintegration theorem (|12| or |7|) consists of a rather sophisticated Hahn-Banach argument combined with a measure theoretic argument like the Radon Nikodym theorem. For this we refer especially to a theorem given by M. Valadier |13| and also by M. Neumann |10|. We first extend this result (in the formulation of 1101) to convex cones. This extension is nontrivial because in the situation of convex cones one looses in general the required measure theoretic convergence properties if a linear functional is decomposed with respect to an integral over sublinear functionals. For avoiding these difficulties we have to combine a maximality- argument with, what we call, a localized order structure. On the first view this order structure looks somewhat artificial, but it certainly has some interest in its own since it turns out that the disintegration is compatible with this order structure. The use- fulness of these order theoretic arguments is illustrated by giving as an example a generalization of Gale's [4] celebrated theorem on flows in networks (see also Ryser [11]). 1* A Disintegration theorem* Let (Ω, Σ, m) be a measure space with σ-algebra Σ and positive σ-finite measure m. By L\(m) we denote the convex cone of Unvalued {R*~R U {— °°}) measurable functions on Ω such that their positive part (but not necessarily the negative part) is integrable with respect to m.
    [Show full text]
  • Nonlinear Structures Determined by Measures on Banach Spaces Mémoires De La S
    MÉMOIRES DE LA S. M. F. K. DAVID ELWORTHY Nonlinear structures determined by measures on Banach spaces Mémoires de la S. M. F., tome 46 (1976), p. 121-130 <http://www.numdam.org/item?id=MSMF_1976__46__121_0> © Mémoires de la S. M. F., 1976, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journees Geom. dimens. infinie [1975 - LYON ] 121 Bull. Soc. math. France, Memoire 46, 1976, p. 121 - 130. NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES By K. David ELWORTHY 0. INTRODUCTION. A. A Gaussian measure y on a separable Banach space E, together with the topolcT- gical vector space structure of E, determines a continuous linear injection i : H -> E, of a Hilbert space H, such that y is induced by the canonical cylinder set measure of H. Although the image of H has measure zero, nevertheless H plays a dominant role in both linear and nonlinear analysis involving y, [ 8] , [9], [10] . The most direct approach to obtaining measures on a Banach manifold M, related to its differential structure, requires a lot of extra structure on the manifold : for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M which has the structure of a Hilbert manifold, [6] , [7].
    [Show full text]
  • Delivery Cialis Overnight
    J. Nonlinear Var. Anal. 2 (2018), No. 2, pp. 229-232 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.2.2018.2.09 DISINTEGRATION OF YOUNG MEASURES AND CONDITIONAL PROBABILITIES TORU MARUYAMA Department of Economics, Keio University, Tokyo, Japan Abstract. Existence of a version of conditional probabilies is proved by means of a general disintegration theorem of Young measures due to M. Valadier. Keywords. Conditional probability; Disintegration; Young measure. 2010 Mathematics Subject Classification. 28A50, 28A51, 60B10. 1. INTRODUCTION In this brief note, the relationship between the concept of disintegrations of Young measures and that of regular conditional probabilities is clarified. Although the similarity between these two has been noticed in the long history of the theory of Young measures, some vagueness seems to have been left. Our target is to prove the existence of regular conditional probabilities through the disintegrability theorem. For a general theory of Young measures, the readers are referred to Valadier [5]. 2. PRELIMINARIES Let (W;E ; m) be a finite measure space and X a Hausdorff topological space endowed with the Borel s-field B(X). The mapping pW : W × X ! W (resp. pX : W × X ! X) denotes the projection of W × X into W (resp. X). A (positive) finite measure g on (W × X;E ⊗ B(X)) is called a Young measure if it satisfies −1 g ◦ pW = m: (2.1) The set of all Young measures on (W × X;E ⊗ B(X)) is denoted by Y(W; m;X). A family fnw jw 2 Wg of measures on (X;B(X)) is called a measurable family if the mapping w 7! nw (B) is measurable for any B 2 B(X).
    [Show full text]
  • On the Uniqueness of Probability Measure Solutions to Liouville's
    On the uniqueness of probability measure solutions to Liouville’s equation of Hamiltonian PDEs. Zied Ammari, Quentin Liard To cite this version: Zied Ammari, Quentin Liard. On the uniqueness of probability measure solutions to Liouville’s equa- tion of Hamiltonian PDEs.. Discrete and Continuous Dynamical Systems - Series A, American Insti- tute of Mathematical Sciences, 2018, 38 (2), pp.723-748. 10.3934/dcds.2018032. hal-01275164v3 HAL Id: hal-01275164 https://hal.archives-ouvertes.fr/hal-01275164v3 Submitted on 13 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On uniqueness of measure-valued solutions to Liouville’s equation of Hamiltonian PDEs Zied Ammari and Quentin Liard∗ September 13, 2016 Abstract In this paper, the Cauchy problem of classical Hamiltonian PDEs is recast into a Liou- ville’s equation with measure-valued solutions. Then a uniqueness property for the latter equation is proved under some natural assumptions. Our result extends the method of char- acteristics to Hamiltonian systems with infinite degrees of freedom and it applies to a large variety of Hamiltonian PDEs (Hartree, Klein-Gordon, Schr¨odinger, Wave, Yukawa . ). The main arguments in the proof are a projective point of view and a probabilistic representation of measure-valued solutions to continuity equations in finite dimension.
    [Show full text]
  • The Cauchy Transform Mathematical Surveys and Monographs
    http://dx.doi.org/10.1090/surv/125 The Cauchy Transform Mathematical Surveys and Monographs Volume 125 The Cauchy Transform Joseph A. Citna Alec L. Matheson William T. Ross AttEM^ American Mathematical Society EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 30E20, 30E10, 30H05, 32A35, 32A40, 32A37, 32A60, 47B35, 47B37, 46E27. For additional information and updates on this book, visit www.ams.org/bookpages/surv-125 Library of Congress Cataloging-in-Publication Data Cima, Joseph A., 1933- The Cauchy transform/ Joseph A. Cima, Alec L. Matheson, William T. Ross. p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376; v. 125) Includes bibliographical references and index. ISBN 0-8218-3871-7 (acid-free paper) 1. Cauchy integrals. 2. Cauchy transform. 3. Functions of complex variables. 4. Holomorphic functions. 5. Operator theory. I. Matheson, Alec L., 1946- II. Ross, William T., 1964- III. Title. IV. Mathematical surveys and monographs; no. 125. QA331.7:C56 2006 515/.43-dc22 2005055587 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Université De Montréal Disintegration Methods in the Optimal Transport
    Universit´ede Montr´eal Disintegration Methods in the Optimal Transport Problem Par Justin B´elair D´epartement de Sciences ´economiques.Facult´edes Arts et Sciences. Universit´ede Montr´eal M´emoirepr´esent´een vue de l'obtention du grade de Maitrise, M.Sc. en Sciences ´economiques, option m´emoire Juin 2019 c Justin B´elair,2019 1 R´esum´eet mots-cl´es Ce travail consiste `aexpliciter des techniques applicables `acertaines classes de probl`emesde transport (Optimal Transport). En effet, le probl`emede transport est une formulation abstraite d'un probl`emed'optimisation qui s'´etendaujourd'hui `aune panoplie d'applications dans des domaines tr`esdi- versifi´es(m´et´eorologie,astrophysique, traitement d'images, et de multiples autres). Ainsi, la pertinence des m´ethodes ici d´ecritess'´etend`abeaucoup plus que des probl`emesmath´ematiques.En particulier, ce travail cherche `amon- trer comment certains th´eor`emesqui sont habituellement pr´esent´escomme des probl`emescombinatoires qui valent sur des ensembles finis peuvent ^etre g´en´eralis´es`ades ensembles infinis `al'aide d'outils de th´eoriede la mesure: le th´eor`emede d´ecomposition de mesures. Ainsi, le domaine d'application concret de ces techniques s'en trouve grandement ´elargiau moyen d'une plus grande abstraction math´ematique. Mots-cl´es:Transport Optimal, D´ecomposition de mesures, Dualit´e,Op- timisation 2 Summary and Keywords The present work hopes to illustrate certain techniques that can be applied to certain classes of Optimal Transport problems. Today, the Optimal Trans- port problem has come to be a mathematical formulation of very diverse problems (meteorology, astrophysics, image processing, etc.) Thus, the per- tinence of the methods described is much larger than mathematical problems.
    [Show full text]
  • Fern⁄Ndez 289-295
    Collect. Math. 48, 3 (1997), 289–295 c 1997 Universitat de Barcelona Moderation of sigma-finite Borel measures J. Fernandez´ Novoa Departamento de Matematicas´ Fundamentales. Facultad de Ciencias. U.N.E.D. Ciudad Universitaria. Senda del Rey s/n. 28040-Madrid. Spain Received November 10, 1995. Revised March 26, 1996 Abstract We establish that a σ-finite Borel measure µ in a Hausdorff topological space X such that each open subset of X is µ-Radon, is moderated when X is weakly metacompact or paralindel¨of and also when X is metalindel¨of and has a µ- concassage of separable subsets. Moreover, we give a new proof of a theorem of Pfeffer and Thomson [5] about gage measurability and we deduce other new results. 1. Preliminaries Let X be a Hausdorff topological space. We shall denote by G, F, K and B, respec- tively, the families of all open, closed, compact and Borel subsets of X. Let µ be a Borel measure in X, i.e. a locally finite measure on B. A set B ∈B is called (a) µ-outer regular if µ(B)= inf {µ(G):B ⊂ G ∈G}; (b) µ-Radon if µ(B)= sup {µ(K):B ⊃ K ∈K}. The measure µ is called (a) outer regular if each B ∈Bis µ-outer regular; (b) Radon if each B ∈Bis µ-Radon. A µ-concassage of X is a disjoint family (Kj)j∈J of nonempty compact subsets of X which satisfies 289 290 Fernandez´ ∩ ∈G ∈ ∩ ∅ (i) µ(G Kj) > 0 for each G and each j J such that G Kj = ; ∩ ∈B (ii) µ(B)= j∈J µ (B Kj)for each B which is µ-Radon.
    [Show full text]
  • A Sheaf Theoretic Approach to Measure Theory
    A SHEAF THEORETIC APPROACH TO MEASURE THEORY by Matthew Jackson B.Sc. (Hons), University of Canterbury, 1996 Mus.B., University of Canterbury, 1997 M.A. (Dist), University of Canterbury, 1998 M.S., Carnegie Mellon University, 2000 Submitted to the Graduate Faculty of the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH DEPARTMENT OF MATHEMATICS This dissertation was presented by Matthew Jackson It was defended on 13 April, 2006 and approved by Bob Heath, Department of Mathematics, University of Pittsburgh Steve Awodey, Departmant of Philosophy, Carnegie Mellon University Dana Scott, School of Computer Science, Carnegie Mellon University Paul Gartside, Department of Mathematics, University of Pittsburgh Chris Lennard, Department of Mathematics, University of Pittsburgh Dissertation Director: Bob Heath, Department of Mathematics, University of Pittsburgh ii ABSTRACT A SHEAF THEORETIC APPROACH TO MEASURE THEORY Matthew Jackson, PhD University of Pittsburgh, 2006 The topos Sh( ) of sheaves on a σ-algebra is a natural home for measure theory. F F The collection of measures is a sheaf, the collection of measurable real valued functions is a sheaf, the operation of integration is a natural transformation, and the concept of almost-everywhere equivalence is a Lawvere-Tierney topology. The sheaf of measurable real valued functions is the Dedekind real numbers object in Sh( ) (Scott [24]), and the topology of “almost everywhere equivalence“ is the closed F topology induced by the sieve of negligible sets (Wendt[28]) The other elements of measure theory have not previously been described using the internal language of Sh( ).
    [Show full text]
  • The Gap Between Gromov-Vague and Gromov-Hausdorff-Vague Topology
    THE GAP BETWEEN GROMOV-VAGUE AND GROMOV-HAUSDORFF-VAGUE TOPOLOGY SIVA ATHREYA, WOLFGANG LOHR,¨ AND ANITA WINTER Abstract. In [ALW15] an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underly- ing spaces converge Gromov-Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov-Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov-Hausdorff-Prohorov metric which is defined on different equivalence classes of metric measure spaces. We explain the necessity of these two topologies via several examples, and close the gap between them. That is, we show that convergence in Gromov- vague topology implies convergence in Gromov-Hausdorff-vague topology if and only if the so-called lower mass-bound property is satisfied. Further- more, we prove and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above (summarized in Figure 1). As an application, we consider the Galton-Watson tree with critical off- spring distribution of finite variance conditioned to not get extinct, and construct the so-called Kallenberg-Kesten tree as the weak limit in Gromov- Hausdorff-vague topology when the edge length are scaled down to go to zero. Contents 1. Introduction 1 2. The Gromov-vague topology 6 3.
    [Show full text]