B I O T E C H I N T H E S U N S H I N E S T A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biographical Information
Curriculum Vitae Sharon Hammes-Schiffer Department of Chemistry phone: (203) 432-3915 Yale University 225 Prospect Street e-mail: [email protected] New Haven, CT 06520-8107 http://hammes-schiffer-group.org/ Date of Birth May 27, 1966 Education B.A. Chemistry Princeton University 5/88 summa cum laude, Highest Honors in Chemistry Ph.D. Chemistry Stanford University 9/93 Graduate advisor: Hans C. Andersen Professional Experience John Gamble Kirkwood Professor of Chemistry 1/18 – present Yale University Swanlund Professor of Chemistry 8/12 − 12/17 University of Illinois at Urbana-Champaign Eberly Professor in Biotechnology 8/06 − 8/12 Pennsylvania State University Professor of Chemistry 7/03 − 8/12 Pennsylvania State University Shaffer Associate Professor of Chemistry 8/00 − 7/03 Pennsylvania State University Clare Boothe Luce Assistant Professor of Chemistry 8/95 − 8/00 University of Notre Dame Postdoctoral research scientist AT&T Bell Laboratories 9/93 − 8/95 AT&T Bell Laboratories, Murray Hill, NJ Postdoctoral supervisor: John C. Tully Honors and Awards G. M. Kosolapoff Award from Auburn University, 2019 Member, Connecticut Academy of Science and Engineering (CASE), 2018 Center for Advanced Study Professor, University of Illinois Urbana-Champaign, 2017 Senior Fellow, Canadian Institute for Advanced Research (CIFAR), 2016 − present Fellow, Biophysical Society, 2015 Blue Waters Professor, 2014 – 2018 Member, International Academy of Quantum Molecular Science, 2014 Member, U.S. National Academy of Sciences, 2013 Fellow, American Association for the Advancement of Science, 2013 Member, American Academy of Arts and Sciences, 2012 Fellow, American Chemical Society, 2011 National Institutes of Health MERIT Award, 2011 1 Sharon Hammes-Schiffer CV -- 08/27/18 Fellow, American Physical Society, 2010 American Chemical Society Akron Section Award, 2008 International Academy of Quantum Molecular Science Medal, 2005 Iota Sigma Pi Agnes Fay Morgan Research Award, 2005 Alexander M. -
Meet the Faculty Candidates
MEET THE FACULTY CANDIDATES Candidates are displayed in alphabetically by last name. Prospective employers are invited to attend and while no event pre-registration is required however they must be registered for the BMES 2018 Annual Meeting. A business card will be required to enter the event. COMPLETE DETAILED CANDIDATE INFORMATION AVAILABLE AT www.bmes.org/faculty. Specialty - Biomaterials Alessia Battigelli Woo-Sik Jang Sejin Son John Clegg Patrick Jurney Young Hye Song R. Cornelison Kevin McHugh Ryan Stowers Yonghui Ding Yifeng Peng Varadraj Vernekar Victor Hernandez-Gordillo Shantanu Pradhan Scott Wilson Marian Hettiaratchi Eiji Saito Yaoying Wu Era Jain Andrew Shoffstall Specialty - Biomechanics Adam Abraham Vince Fiore Panagiotis Mistriotis Edward Bonnevie Zeinab Hajjarian Simone Rossi Alexander Caulk Xiao Hu Alireza Yazdani Venkat Keshav Chivukula Heidi Kloefkorn Rana Zakerzadeh Jacopo Ferruzzi Yizeng Li Specialty - Biomedical Imaging Mahdi Bayat Chong Huang Katheryne Wilson Zhichao Fan Jingfei Liu Kihwan Han Alexandra Walsh Specialty - BioMEMS Jaehwan Jung Aniruddh Sarkar Mengxi Wu Specialty - Cardiovascular Engineering Reza Avaz Kristin French Zhenglun (Alan) Wei Specialty - Cellular Engineering Annie Bowles Kate Galloway Kuei-Chun Wang Alexander Buffone Laurel Hind Mahsa Dabagh Matthew Kutys See other side for more candidates Specialty - Device Engineering (Microfluidics, Electronics, Machine-Body interface) Taslim Al-Hilal Brian Johnson David Myers Jungil Choi Tae Jin Kim Max Villa Haishui Huang Jiannan Li Ying Wang Specialty -
Elaine Fuchs
Women in Cell Science 4877 Elaine Fuchs FMW: How has your research career impacted on your personal life and vice Elaine Fuchs was born in the United versa? States and raised just outside Chicago. In 1972 she graduated with EF: My father was a geochemist who a B.S. and highest distinction in specialized in meteorites at Argonne the Chemical Sciences from the National Laboratories. My aunt, who University of Illinois. Her lived in the house next door, was a undergraduate thesis research in biologist at Argonne, and an ardent physical chemistry focused on the feminist. My sister, four years my senior, electrodiffusion of nickel through is now a neuroscientist. My mother is a quartz. She moved from Illinois to housewife, who loves gardening and Princeton University to study for her cooking and used to play piano and paint PhD in Biochemistry, investigating in oils. Growing up in such a family, and changes in bacterial cell walls during with farm fields, creeks and ponds in the sporulation in Bacillus megaterium. near vicinity, I developed a deep interest Elaine Fuchs in her lab in 1980. In 1977, she joined Howard Green, in science that has carried me through then at Massachusetts Institute my professional life. of Technology (MIT), for her If I think back to the family influences during Vietnam War protests. Although postdoctoral studies. There, she that shaped my choice of career, I my near perfect performances on tough focused on elucidating the remember that my Dad strongly physics and chemistry exams may have mechanisms underlying the balance advocated my being an elementary turned a few heads, I don’t feel that it between growth and differentiation in school teacher. -
Annual Report 2013.Pdf
ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4 -
High-Pressure X-Ray Crystallography and Core Hydrophobicity of T4
HIGH-PRESSURE X-RAY CRYSTALLOGRAPHY AND CORE HYDROPHOBICITY OF T4 LYSOZYMES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Marcus David Collins January 2006 This document is in the public domain. HIGH-PRESSURE X-RAY CRYSTALLOGRAPHY AND CORE HYDROPHOBICITY OF T4 LYSOZYMES Marcus David Collins, Ph.D. Cornell University 2006 While a great many protein structures are now known, considerably less is known experimentally about how these molecules reversibly fold and unfold into nearly unique, active structures. For more than 50 years, the central hypothesis has been that micro-scale phase separation between oil-like non-polar and charged or po- lar amino acid residues drives the formation of a “hydrophobic” protein core. A great deal of evidence supports this hypothesis, but the unfolding of proteins as a response to pressure contradicts it. A possible solution is the suggestion that pres- sure induced unfolding is a different process from thermally or chemically driven unfolding. Separately, little is known about the structural response of proteins to pressure, although pressure has clear and sometimes large effects on protein activ- ity and stability. For these reasons, we have chosen to study the cavity-containing mutant L99A of T4 Lysozyme, along with the wild-type protein, under pressures up to 2 kbar, a compression of about 0.1%. The protein is remarkably incompress- ible, and the presence of a cavity has almost no impact on the pressure response over the wild-type lysozyme. Instead, four water molecules cooperatively fill the cavity, interacting with each other and the protein roughly equally. -
Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry
Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry This section contains links to textbooks, books, and articles in digital libraries of several publishers (Springer, Elsevier, Wiley, etc.). Most links will work without login on any campus (or remotely using the institution’s VPN) where the institution (company) subscribes to those digital libraries. For De Gruyter and the associated university presses (Chicago, Columbia, Harvard, Princeton, Yale, etc.) you may have to go through your institution’s library portal first. A red title indicates an excellent item, and a blue title indicates a very good (often introductory) item. A purple year of publication is a warning sign. Titles of Open Access (free access) items are colored green. The library is being converted to conform to the university virtual library model that I developed. This section of the library was updated on 06 September 2021. Professor Joseph Vaisman Computer Science and Engineering Department NYU Tandon School of Engineering This section (and the library as a whole) is a free resource published under Attribution-NonCommercial-NoDerivatives 4.0 International license: You can share – copy and redistribute the material in any medium or format under the following terms: Attribution, NonCommercial, and NoDerivatives. https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright 2021 Joseph Vaisman Table of Contents Food for Thought Biographies Biology Books Articles Web John Tyler Bonner Morphogenesis Evolution -
Schedule of C Ourses
2017–2018 Schedule of Courses Schedule The David Rockefeller Graduate Program offers a Required reading: Molecular Biology of the Cell by Bruce Alberts et al.; Molecular Cell Biology by James E. Darnell et al. selection of courses, many of which students can Recommended reading: Basic Histology by Luiz Carlos Junqueira choose based on their interests and area of thesis et al. research. Organized by Rockefeller faculty, and taught Method of evaluation: Attendance, participation in the discussions, by scientists at the top of their fields, both from within student presentations, and a final oral exam and outside of the university, these courses are designed to provide a stimulating and dynamic curriculum that Cell Cycle Control students can tailor to fit their personal goals, in FREDERICK R. CROSS and HIRONORI FUNABIKI consultation with the dean of graduate studies. This seminar explores the current understanding of eukaryotic cell cycle control. Topics include the construction of a biochemical oscillator and overall structure of cell cycle control; positive and Biochemical and Biophysical Methods negative control of DNA replication; spindle morphogenesis and function; chromosome cohesion control; surveillance mechanisms SETH A. DARST and MICHAEL P. ROUT (checkpoints) monitoring spindle and DNA integrity; and control of This course presents the fundamental principles of biochemistry proliferation (start/restriction point control). The seminar relies heavily and biophysics, with an emphasis on methodologies. It addresses on studies in model organisms, but the emphasis throughout will be issues of protein and nucleic acid structure and the forces that on aspects of cell cycle control conserved among eukaryotes. underlie stability and govern the formation of specific three- Class length and frequency: 2.5-hour lecture and discussion, dimensional structures. -
Clinical Molecular Genetics in the Uk C.1975–C.2000
CLINICAL MOLECULAR GENETICS IN THE UK c.1975–c.2000 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary, University of London, on 5 February 2013 Edited by E M Jones and E M Tansey Volume 48 2014 ©The Trustee of the Wellcome Trust, London, 2014 First published by Queen Mary, University of London, 2014 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 0 90223 888 6 All volumes are freely available online at www.history.qmul.ac.uk/research/modbiomed/ wellcome_witnesses/ Please cite as: Jones E M, Tansey E M. (eds) (2014) Clinical Molecular Genetics in the UK c.1975–c.2000. Wellcome Witnesses to Contemporary Medicine, vol. 48. London: Queen Mary, University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations xi Ancillary guides xiii Introduction Professor Bob Williamson xv Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photograph, with key, of delegates attending The Molecular Biology of Thalassaemia conference in Kolimbari, Crete, 1978 88 Appendix 2 Extracts from the University of Leiden postgraduate course Restriction Fragment Length Polymorphisms and Human Genetics, 1982 91 Appendix 3 Archival material of the Clinical Molecular Genetics Society 95 Biographical notes 101 References 113 Index 131 Witness Seminars: Meetings and Publications 143 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. -
April at PENN Calendar, Vol. 53, No. 27, March 27, 2007
Charles Addams Fine Arts Gallery, Now South Asia Center Film Series ACADEMIC CALENDAR Charles Addams Fine Arts Hall: free; MFA Thesis Preview Exhibition; 5 p.m.; rm. 25, Williams Hall. Mon.-Fri., 10 a.m.-5 p.m. Meyerson Gallery. Through April 4. 2 María Candelaria. 20 Spring Term Classes End. Esther M. Klein Art Gallery : free; Love, Loss & Longing: The Impact 9 Waga seishun ni kuinashi. 23 Reading Days. Through April 25. Mon.-Sat., 9 a.m.-5 p.m. of U.S. Travel Policies on Cuban-Ameri- 26 Final Exams. Through May 4. Graduate School of Education can Families; photography exhibit; Inter- 16 Zinda Laash. April (GSE) Student Lounge: free; Mon.-Fri., national House. Through April 9. CHILDREN’S ACTIVITIES 9 a.m.-5 p.m. The Art of Reinvention: Travel, MEETINGS ICA: $6, $3/artists, seniors, students Exile, and Recuperation; political exile 14 Handicraft Tradition of India; ex- over 12; free/members, children 12 & under, of artists Franz Werfel and Kinga Araya; 12 PPSA; noon-1:30 p.m.; location tbd; A T P E N N plore India’s cultural traditions and create w/PennCard; Sun., 11 a.m.-1 p.m.; Wed.- Rosenwald Gallery, Van Pelt-Dietrich RSVP: [email protected]. a decorative handicraft; ages 7+; 10 a.m.; Fri., noon-8 p.m.; Sat.-Sun., 11 a.m.-5 p.m. Library. Through April 13. 19 WPSA; noon; rm. 218, Houston Penn Museum; $10, $5/members; register International House; free; for hours Undergraduate Senior Thesis Hall. Wherever these symbols appear, more by April 7: (215) 898-4016 (Museum). -
Part I Officers in Institutions Placed Under the Supervision of the General Board
2 OFFICERS NUMBER–MICHAELMAS TERM 2009 [SPECIAL NO.7 PART I Chancellor: H.R.H. The Prince PHILIP, Duke of Edinburgh, T Vice-Chancellor: 2003, Prof. ALISON FETTES RICHARD, N, 2010 Deputy Vice-Chancellors for 2009–2010: Dame SANDRA DAWSON, SID,ATHENE DONALD, R,GORDON JOHNSON, W,STUART LAING, CC,DAVID DUNCAN ROBINSON, M,JEREMY KEITH MORRIS SANDERS, SE, SARAH LAETITIA SQUIRE, HH, the Pro-Vice-Chancellors Pro-Vice-Chancellors: 2004, ANDREW DAVID CLIFF, CHR, 31 Dec. 2009 2004, IAN MALCOLM LESLIE, CHR, 31 Dec. 2009 2008, JOHN MARTIN RALLISON, T, 30 Sept. 2011 2004, KATHARINE BRIDGET PRETTY, HO, 31 Dec. 2009 2009, STEPHEN JOHN YOUNG, EM, 31 July 2012 High Steward: 2001, Dame BRIDGET OGILVIE, G Deputy High Steward: 2009, ANNE MARY LONSDALE, NH Commissary: 2002, The Rt Hon. Lord MACKAY OF CLASHFERN, T Proctors for 2009–2010: JEREMY LLOYD CADDICK, EM LINDSAY ANNE YATES, JN Deputy Proctors for MARGARET ANN GUITE, G 2009–2010: PAUL DUNCAN BEATTIE, CC Orator: 2008, RUPERT THOMPSON, SE Registrary: 2007, JONATHAN WILLIAM NICHOLLS, EM Librarian: 2009, ANNE JARVIS, W Acting Deputy Librarian: 2009, SUSANNE MEHRER Director of the Fitzwilliam Museum and Marlay Curator: 2008, TIMOTHY FAULKNER POTTS, CL Director of Development and Alumni Relations: 2002, PETER LAWSON AGAR, SE Esquire Bedells: 2003, NICOLA HARDY, JE 2009, ROGER DERRICK GREEVES, CL University Advocate: 2004, PHILIPPA JANE ROGERSON, CAI, 2010 Deputy University Advocates: 2007, ROSAMUND ELLEN THORNTON, EM, 2010 2006, CHRISTOPHER FORBES FORSYTH, R, 2010 OFFICERS IN INSTITUTIONS PLACED UNDER THE SUPERVISION OF THE GENERAL BOARD PROFESSORS Accounting 2003 GEOFFREY MEEKS, DAR Active Tectonics 2002 JAMES ANTHONY JACKSON, Q Aeronautical Engineering, Francis Mond 1996 WILLIAM NICHOLAS DAWES, CHU Aerothermal Technology 2000 HOWARD PETER HODSON, G Algebra 2003 JAN SAXL, CAI Algebraic Geometry (2000) 2000 NICHOLAS IAN SHEPHERD-BARRON, T Algebraic Geometry (2001) 2001 PELHAM MARK HEDLEY WILSON, T American History, Paul Mellon 1992 ANTHONY JOHN BADGER, CL American History and Institutions, Pitt 2009 NANCY A. -
Chemical Heritage Foundation William S. Knowles
CHEMICAL HERITAGE FOUNDATION WILLIAM S. KNOWLES Transcript of an Interview Conducted by Michael A. Grayson at St. Louis, Missouri on 30 January 2008 (With Subsequent Corrections and Additions) This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: William S. Knowles, interview by Michael A. Grayson at St. Louis, Missouri, 30 January 2008 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0406). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. WILLIAM S. KNOWLES 1917 Born in Taunton, Massachusetts on 1 June Education 1939 A.B., Harvard University, Chemistry 1942 Ph.D., Columbia University, Steroids Professional Experience Monsanto, Dayton 1942-1944 Chemical Research and Development Monsanto, St. Louis 1944-1951 Organic Division Harvard University 1951-1952 Academic Leave, Total Synthesis of Steroids, R.B. Woodward Monsanto, St. -
Historischer Abriss
Historischer Abriss 1970 Geschichte der Zellbiologie im Überblick Entdeckung der reversen Transkription durch H. (Kapitel 1.1) Temin und D. Baitimare 17. Jahrhundert 1972 Bezeichnung der porenartigen Strukturen des Fluid-mosaic-Modell der Zellmembran (S. Singer Korks als "Zellen" durch R. Hooke und G. Nicholson) Identifizierung von Amöben und Bakterien im 1973 durch A. van Leeuwenhoek Mikroskop Erstes rekombinantes DNA-Molekül 1838 1975 Entdeckung, dass Pflanzen aus Zellen aufgebaut Erzeugung von monoklonalen Antikörpern durch sind (M. Schleiden) C. Milstein und G. Köhler 1839 1976 Beschreibung der Zelle als strukturelle Einheit des Entdeckung des v-src-Onkogens durch H. Varmus Lebens durch T. Schwann und M. Bishop Um 1850 Aufklärung des Rearrangements von Immunglobu Mendel-Vererbungsgesetze lingenen durch S. Tonegawa 1855 1977 Erkenntnis, dass Zellen nur durch Teilung aus an Entdeckung der rezeptorvermittelten Endozytose deren Zellen entstehen (R . Virchow) durch M. Brown und ]. Goldstein 1911 1980 Tumorinduktion durch Viren (P. Rous) Isolierung von G-Proteinen durch A. Gilman 1945 1982 Erstes elektronenmikroskopisches Bild einer intak Prionenhypothese von S. Prusiner ten Zelle durch K. R. Porter, A. Claude und E. F. DNA-Sequenzierungsmethoden nach Sanger und Fullam Gilbert 1951 1983 Erste In-vitro-Kultur von humanen Zellen durch Erfindung der Polymerasekettenreaktionsmethode G. Gey (HeLa) durch K. Mullis 1953 1989 Modell der DNA-Doppelhelix durch]. Watson und Erzeugung von Knockout-Mäusen durch M. Cap F. Crick pechi 1961 1996 Entschlüsselung des genetischen Kodes durch M. Verwendung DNA-Mikroarrays zur Analyse der Nirenberg Genexpression Operon Modell von F. ]acob und ]. Monod Chemiosmotische Theorie der oxidativen Phospho 2000 rylierung von P. Mitchell Vollständige Sequenz des humanen Genoms Ganten I Ruckpaul (Hrsg.) Grundlagen der Molekularen Medizin, 2.