Infectious Diseases Past and Present

Total Page:16

File Type:pdf, Size:1020Kb

Infectious Diseases Past and Present PART I INTRODUCTION TO EMERGING INFECTIOUS DISEASES COPYRIGHTED MATERIAL CCH001.inddH001.indd 1 221/02/111/02/11 111:551:55 AAMM CCH001.inddH001.indd 2 221/02/111/02/11 111:551:55 AAMM CHAPTER 1 INFECTIOUS DISEASES PAST AND PRESENT LEARNING OBJECTIVES ● Discuss the roles of plague and smallpox in human history ● Discuss the most important infectious diseases in the world today ● Discuss the linkages between infectious diseases, poverty, and civil unrest ● Describe a number of emerging and reemerging infectious dis- eases found in the Americas, outside of the Americas, and throughout the world ● Discuss a number of factors contributing to the emergence or reemergence of infectious diseases ● Gain a sense of the number of new infectious diseases that have emerged recently and the rapid pace of discovery of the microbes responsible, development of antimicrobial drugs, and evolution of microbial drug resistance CCH001.inddH001.indd 3 221/02/111/02/11 111:551:55 AAMM 4 EMERGING INFECTIOUS DISEASES Major Concepts History Infectious diseases have had a great impact on human history, killing vast num- bers of persons and disabling or disfi guring many others. Some diseases have transformed the social and economic landscape of a region, as when the decline in the peasant population following the Black Death contributed to the end of the feudal system. The fi ght against smallpox led to the development of vaccina- tion, a weapon in the human arsenal that prevented major loss of life by protect- ing people from a wide range of diseases. Due to an ever-better understanding of the causative agents of infectious diseases, other tools have been developed to prevent or treat illnesses, including improved sanitation, greater availability of clean drinking water, the increased use of disinfectants, the discovery of antimicrobial compounds, and improvements in the inspection, processing, and preparation of food and drink. The incidence and severity of infectious diseases have fallen in developed nations but are again on the rise worldwide. Infectious Diseases Today The leading causes of death due to infectious diseases in the world today are lower respiratory tract infections, diarrheal diseases, HIV/AIDS, tuberculosis, malaria, and dengue hemorrhagic fever and shock syndrome. Many of the victims of these diseases belong to the most vulnerable segments of our population, the very young and the very old, those weakened by other pathological conditions, and those with compromised immune responses. Many other diseases affect smaller segments of humankind. Some of these preferentially strike those living in certain climates or ecosystems, in lower socioeconomic groups, or in regions of civil unrest and war. Other diseases are more prevalent in some racial groups, age ranges, occupations, or one gender. Still other diseases are indiscriminate killers. Incidence of some diseases peaks in certain seasons, while others occur year round. Emerging and Reemerging Infectious Diseases Many diseases have either been described for the fi rst time within the past 40 to 50 years or have increased in incidence, severity, or geographical range. This text focuses on a number of such diseases and the associated microbes. Several factors in combination have contributed to the explosion of emerging and reemerging infectious diseases in recent times (as evidenced by the Timeline at the end of this chapter). Our awareness of new infections may be due in part to improved CCH001.inddH001.indd 4 221/02/111/02/11 111:551:55 AAMM INFECTIOUS DISEASES PAST AND PRESENT 5 detection and understanding of the underlying causes of illness. Many of the emerging diseases, however, appear to be entirely new to humans, while many reemerging diseases represent increasing threats to humankind. Several of the fac- tors believed to contribute to the emergence or reemergence of infectious diseases include microbial evolution, the trend toward increasing urbanization, population migrations between regions or into formerly uninhabited areas, the ease and speed of long-distance movement of persons and materials, natural disasters, climatic and ecological changes, and decreased vaccination rates in many regions of the world. One of the important factors contributing to the rapid emergence of new infections is the increasingly large numbers of immunocompromised indi- viduals who are vulnerable to the development of severe or life-threatening diseases as a result of infection by organisms formerly viewed as nonpathogenic. History of Infectious Diseases Much of the history of humankind has been critically shaped by infectious diseases. Large, widespread outbreaks of bubonic, pneumonic, and septicemic plague, caused by infection with Yersinia pestis, have struck repeatedly, includ- ing the Plague of Justinian from 542 to 767, which killed 40 million people in Europe and Asia Minor and initiated the Dark Ages, and the Black Death, lasting from the fourteenth to eighteenth centuries. The latter began in Central Asia and subsequently spread to China, India, and Asia Minor, entering Italy in 1347. Twenty-fi ve to fi fty percent of the population of Europe succumbed to the plague within the next three years, leading to the death of many peasants and the abandonment of much of the agricultural land. The resulting food shortage and loss of an abundant workforce rendered the existing governments ineffective. These were major factors in the eventual collapse of the feudal system and the rise of middle-class artisans. Improvements in sanitation were also implemented due to lessons learned during the plague years. Smallpox is another disease that changed the face of human history, quite literally, for over three thousand years, affl icting humans with horrifi c and disfi g- uring scars, blindness, and death for most of our known existence. Its eradication has been one of our greatest achievements. The rich and powerful were not spared the attention of this deadly pesti- lence. Scars were even found on the mummy of the Egyptian pharaoh Ramses V. Throughout the ages, the fatality rate often approached 30%, with 65% to 80% of the survivors left with pockmarks on their faces as reminders of their ordeal. As late as the 1700s, 10% to 14% of the children in France, Sweden, and Russia died of smallpox. Surviving the disease was almost a rite of passage, and no parent could be totally at ease until his or her children had vanquished that most dreaded foe. CCH001.inddH001.indd 5 221/02/111/02/11 111:551:55 AAMM 6 EMERGING INFECTIOUS DISEASES FIGURE 1.1 Child with smallpox Source: CDC/Jean Roy. “The smallpox was always present,” wrote T. B. Macaulay, “fi lling the churchyards with corpses, tormenting with constant fears all whom it had stricken, leaving on those whose lives it spared the hideous traces of its power, turning the babe into a changeling at which the mother shuddered, and making the eyes and cheeks of the betrothed maiden objects of horror to the lover.” It was observed in China over a thousand years ago that survivors of smallpox did not contract the disease again, even after extended exposure to infected per- sons. It was additionally discovered that inoculation of previously unexposed persons with material from dried smallpox scabs derived from persons with mild cases of the disease often safeguarded the inoculated persons against developing severe infection at a later time. This practice was known as variolation and occasionally resulted in death. Variolation was brought to Europe in 1721 by Lady Mary Wortley Montagu, the wife of the British ambassador to Turkey. Decades later, Edward Jenner acted on the common observation that milkmaids, who typically developed the mild disease cowpox, did not later suffer from smallpox or develop the hideous scars present on most members of society. In 1796, he modifi ed the practice of variolation by inoculating a young boy, James Phipps, with material from cowpox scabs and subsequently challenging him with smallpox. Fortunately for James (and humanity), the boy was protected. Thus began the age of vaccination, which ultimately led to the eradication of smallpox as a result of the concerted efforts of many dedicated individuals work- ing under diffi cult conditions throughout the world for a decade. The program featured the quarantine of patients and their contacts as well as vaccination of all CCH001.inddH001.indd 6 221/02/111/02/11 111:551:55 AAMM INFECTIOUS DISEASES PAST AND PRESENT 7 FIGURE 1.2 Sign announcing smallpox vaccination Source: CDC. potential contacts. Ali Maalin from Somalia is believed to have acquired the last naturally occurring case of smallpox in 1977. Several subsequent cases occurred several years later in England following viral escape from a laboratory. While smallpox remains the only disease that humans have totally eliminated from nature, the lessons learned during this triumph of humans over one of its most deadly foes have been applied many times in subsequent years. Highly effective vaccines have been developed and brought into widespread use to tame other serious microbial diseases such as polio, whooping cough, German measles, mumps, and tetanus. The science of epidemiology, initiated by John Snow to trace the source of a cholera epidemic in London in the 1850s to a specifi c water pump, transformed public health. The “germ theory of disease,” developed by Louis Pasteur, Robert Koch, John Lister, and others in the 1860s, revolution- ized beliefs concerning the origins of diseases. These developments—along with improvements in sanitation, the availability of clean drinking water, practices such as pasteurization and sterilization of beverages and food, increased use of disinfectants, the discovery of antimicrobial compounds such as antibiotics (discussed in Chapter Eleven) and antiviral drugs, improvement in the inspection of meat and processing facilities, more thorough cooking of meat and eggs, and educational programs—eventually served as tipping points for many infectious diseases in the developed areas of the world. The numbers of cases of microbial illnesses dramatically declined: the incidence of tuberculosis, malaria, cholera, and many other diseases fell either regionally or around the world.
Recommended publications
  • Invasive Group a Streptococcal Disease Communicable Disease Control Unit
    Public Health and Primary Health Care Communicable Disease Control 4th Floor, 300 Carlton St, Winnipeg, MB R3B 3M9 T 204 788-6737 F 204 948-2040 www.manitoba.ca November, 2015 Re: Streptococcal Invasive Disease (Group A) Reporting and Case Investigation Reporting of Streptococcal invasive disease (Group A) (Streptococcus pyogenes) is as follows: Laboratory: All specimens isolated from sterile sites (refer to list below) that are positive for S. pyogenes are reportable to the Public Health Surveillance Unit by secure fax (204-948-3044). Health Care Professional: Probable (clinical) cases of Streptococcal invasive disease (Group A) are reportable to the Public Health Surveillance Unit using the Clinical Notification of Reportable Diseases and Conditions form (http://www.gov.mb.ca/health/publichealth/cdc/protocol/form13.pdf) ONLY if a positive lab result is not anticipated (e.g., poor or no specimen taken, person has recovered). Cooperation in Public Health investigation (when required) is appreciated. Regional Public Health or First Nations Inuit Health Branch (FNIHB): Cases will be referred to Regional Public Health or FNIHB. Completion and return of the Communicable Disease Control Investigation Form is generally not required, unless otherwise directed by a Medical Officer of Health. Sincerely, “Original Signed By” “Original Signed By” Richard Baydack, PhD Carla Ens, PhD Director, Communicable Disease Control Director, Epidemiology & Surveillance Public Health and Primary Health Care Public Health and Primary Health Care Manitoba Health, Healthy Living and Seniors Manitoba Health, Healthy Living and Seniors The sterile and non-sterile sites listed below represent commonly sampled body sites for the purposes of diagnosis, but the list is not exhaustive.
    [Show full text]
  • Toxic Shock-Like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection
    Henry Ford Hospital Medical Journal Volume 37 Number 2 Article 5 6-1989 Toxic Shock-like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection Thomas J. Connolly Donald J. Pavelka Eugene F. Lanspa Thomas L. Connolly Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Connolly, Thomas J.; Pavelka, Donald J.; Lanspa, Eugene F.; and Connolly, Thomas L. (1989) "Toxic Shock- like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection," Henry Ford Hospital Medical Journal : Vol. 37 : No. 2 , 69-72. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol37/iss2/5 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Toxic Shock-like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection Thomas J. Connolly,* Donald J. Pavelka, MD,^ Eugene F. Lanspa, MD, and Thomas L. Connolly, MD' Two patients with toxic shock-like syndrome are presented. Bolh patients had necrotizing cellulitis due to Streptococcus pyogenes, and both patients required extensive surgical debridement. The association of Streptococcus pyogenes infection and toxic shock-like syndrome is discussed. (Henry Ford Hosp MedJ 1989:37:69-72) ince 1978, toxin-producing strains of Staphylococcus brought to the emergency room where a physical examination revealed S aureus have been implicated as the cause of the toxic shock a temperature of 40.9°C (I05.6°F), blood pressure of 98/72 mm Hg, syndrome (TSS), which is characterized by fever and rash and respiration of 36 breaths/min, and a pulse of 72 beats/min.
    [Show full text]
  • VENEREAL DISEASES in ETHIOPIA Survey and Recommendations THORSTEIN GUTHE, M.D., M.P.H
    Bull. World Hlth Org. 1949, 2, 85-137 10 VENEREAL DISEASES IN ETHIOPIA Survey and Recommendations THORSTEIN GUTHE, M.D., M.P.H. Section on Venereal Diseases World Health Organization Page 1. Prevalent diseases . 87 1.1 Historical .............. 87 1.2 Distribution.............. 88 2. Syphilis and related infections . 89 2.1 Spread factors . 89 2.2 Nature of syphilis . 91 2.3 Extent of syphilis problem . 98 2.4 Other considerations . 110 3. Treatment methods and medicaments . 114 3.1 Ancient methods of treatment . 114 3.2 Therapy and drugs . 115 4. Public-health organization. 116 4.1 Hospital facilities . 117 4.2 Laboratory facilities . 120 4.3 Personnel .............. 121 4.4 Organizational structure . 122 4.5 Legislation.............. 124 5. Recommendations for a venereal-disease programme . 124 5.1 General measures. ........... 125 5.2 Personnel, organization and administration . 126 5.3 Collection of data . 127 5.4 Diagnostic and laboratory facilities . 129 5.5 Treatment facilities . 130 5.6 Case-finding, treatment and follow-up . 131 5.7 Budget. ......... ... 134 6. Summary and conclusions . 134 References . 136 In spite of considerable handicaps, valuable developments in health took place in Ethiopia during the last two decades. This work was abruptly arrested by the war, and the fresh start necessary on the liberation of the country emphasized that much health work still remains to be done. A realistic approach to certain disease-problems and the necessity for compe- tent outside assistance to tackle such problems form the basis for future work. The accomplishments of the Ethiopian Government in the limited time since the war bode well for the future.
    [Show full text]
  • WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA).
    [Show full text]
  • Scarlet Fever Fact Sheet
    Scarlet Fever Fact Sheet Scarlet fever is a rash illness caused by a bacterium called Group A Streptococcus (GAS) The disease most commonly occurs with GAS pharyngitis (“strep throat”) [See also Strep Throat fact sheet]. Scarlet fever can occur at any age, but it is most frequent among school-aged children. Symptoms usually start 1 to 5 days after exposure and include: . Sandpaper-like rash, most often on the neck, chest, elbows, and on inner surfaces of the thighs . High fever . Sore throat . Red tongue . Tender and swollen neck glands . Sometimes nausea and vomiting Scarlet fever is usually spread from person to person by direct contact The strep bacterium is found in the nose and/or throat of persons with strep throat, and can be spread to the next person through the air with sneezing or coughing. People with scarlet fever can spread the disease to others until 24 hours after treatment. Treatment of scarlet fever is important Persons with scarlet fever can be treated with antibiotics. Treatment is important to prevent serious complications such as rheumatic fever and kidney disease. Infected children should be excluded from child care or school until 24 hours after starting treatment. Scarlet fever and strep throat can be prevented . Cover the mouth when coughing or sneezing. Wash hands after wiping or blowing nose, coughing, and sneezing. Wash hands before preparing food. See your doctor if you or your child have symptoms of scarlet fever. Maryland Department of Health Infectious Disease Epidemiology and Outbreak Response Bureau Prevention and Health Promotion Administration Web: http://health.maryland.gov February 2013 .
    [Show full text]
  • Strep Throat and Scarlet Fever N
    n Strep Throat and Scarlet Fever n After a few days, the rash begins to fade. The skin usually Strep throat is caused by infection with the bac- begins to peel, as it often does after a sunburn. teria Streptococcus. In addition to sore throat, swollen glands, and other symptoms, some chil- What are some possible dren develop a rash. When this rash is present, the infection is called scarlet fever. If your child complications of scarlet fever? has a strep infection, he or she will need antibio- Strep infection has some potentially serious complica- tics to treat it and to prevent rheumatic fever, tions. With proper treatment, most of these can be pre- which can be serious. vented. Complications include: Strep infection may cause an abscess (localized area of pus) in the throat. What are strep throat and scarlet Rheumatic fever. This disease develops a few weeks after fever? the original strep infection. It is felt to be caused by our immune system. It can be serious and can cause fever, heart Most sore throats are caused by virus, but strep throat is inflammation, arthritis, and other symptoms. Your child caused by the bacteria Group A Strepococcus. Treatment can be left with heart problems called rheumatic disease. of this infection with antibiotics may help your child feel Rheumatic fever is uncommon now and can be prevented better and prevent rheumatic fever. by treating the strep infection properly with antibiotics. Some children with strep throat or strep infections else- where may develop a rash. When that occurs, the infection Acute glomerulonephritis.
    [Show full text]
  • WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T (51) International Patent Classification: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, A61K 31/197 (2006.01) A61K 45/06 (2006.01) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, A61K 31/60 (2006.01) A61P 31/00 (2006.01) TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, A61K 33/22 (2006.01) ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/IN20 12/000634 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 24 September 2012 (24.09.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG). 2792/DEL/201 1 23 September 201 1 (23.09.201 1) IN Declarations under Rule 4.17 : (72) Inventor; and — of inventorship (Rule 4.17(iv)) (71) Applicant : CHAUDHARY, Manu [IN/IN]; 51-52, In dustrial Area Phase- 1, Panchkula 1341 13 (IN).
    [Show full text]
  • Severe Streptococcal Infection
    SEVERE STREPTOCOCCAL INFECTION „AN OLD BUT ACTIVE ENEMY‟ Dr Graham Douglas Aberdeen Royal Infirmary TOP 3 CAUSES OF DEATH IN THE UK 1 Ischaemic Heart Disease (101,000 deaths & falling) 2 Sepsis/Pneumonia (33,000 deaths & rising) 3 Lung Cancer (29,000 deaths & rising in women) STREPTOCOCCI • Spherical Gram – positive bacteria • Cellular division occurs along a single axis – so grow in chains or pairs. (Streptos – Greek meaning „twisted chain‟) • In contrast Staphylococci divide along multiple axes so appear in „grape-like‟ clusters. PATHOGENIC SPECIES • S. agalactiae • S. pneumoniae • S. anginosus • S. pyogenes • S. bovis • S. ratti • S. canis • S. salivarius • S. equi • S. salivarius ssp. • S. iniae thermophilus • S. mitis • S. sanguinis • S. mutans • S. sobrinus • S. oralis • S. suis • S. parasanguinis • S. uberis • S. perosis • S. vestibularis • S. viridans 22 species described STREPTOCOCCUS β –haemolytic α – haemolytic γ – clear, green, haemolytic complete haemolysis partial haemolysis no haemolysis pyogenes agalactiae pneumoniae viridans enterococcus Group A Group B mutans, sanguis E. faecalis Bacitracin sensitive Bacitracin resistant E. faecium Classification of streptococcus Streptococcus pyogenes is Group A beta-haemolytic STREPTOCOCCUS PYOGENES • Nowadays known as GROUP A STREPTOCOCCUS (GAS) • Associated exclusively with human infection • Only human reservoir is skin or mucous membranes • Classified by Rebecca Lancefield, US Microbiologist in 1928 – based on its M. protein, surface virulence factor Facilitates adhesion Responsible for ß-haemolysis on blood agar release of lysosomal contents with subsequent cell death. Cleaves and inactivates human C5a Antiphagocytic activity Induce fever Lyse RBSc, PMNLs and platelets Degrade hyaluronic acid, spread of infection along fascial planes Schematic diagram showing the location of virulence-associated products of Str.
    [Show full text]
  • Scarlet Fever
    BOSTON PUBLIC HEALTH COMMISSION | FACT SHEET Scarlet Fever What is scarlet fever? Scarlet fever is a bacterial infection caused by group A strep, the same type of bacteria that causes strep throat. What are the symptoms? Common symptoms include: • A red rash with a sandpaper feel that covers most of the body • A very red, sore throat • A fever of 101˚F or above • Bright red skin in the crease of the underarm, elbow, and groin areas • A red and bumpy tongue • A whitish coating on the tongue • Swollen glands in the neck Other general symptoms include: • Headache and body aches • Nausea, vomiting, or abdominal pain How is it spread? Scarlet fever is spread through contact with droplets from and infected person’s cough or sneeze. If you touch your mouth, nose, or eyes after coming into contact with these droplets, you may become infected. You can also get sick after sharing the same drinking glass or utensils with a sick person. It is possible to get scarlet fever from contact with sores from group A strep skin infections. For people diagnosed with scarlet fever, it is important for them to change their toothbrush after 1-2 days on antibiotics to avoid re-infecting themselves. Who gets scarlet fever? Although anyone can get scarlet fever, children and some adults are more likely to get infected than others. It is most common in children between the ages of 5 and 15. Adults who are in contact with children are at higher risk for scarlet fever than other adults. Crowded conditions, such as schools and daycare centers, can increase the risk of spreading the infection.
    [Show full text]
  • Copyrighted Material
    INDEX A American hemorrhagic fevers: Antibiotic action; Drug resistance; Α-dystroglycan, 301 Argentine, 16–17, 35, 279–280; Immune system; specifi c disease Abrus precatorius, 689 Bolivian, 277, 280, 287–288; Antiviral agents: AZT (zidovudine), Acid-fast bacteria, 212 Brazilian, 277, 281; overview of, 13, 32, 38, 48, 340–341, 355, 356; Active Bacterial Core (ABCs) 274, 274–279, 282–286; treatment, blocking synthesis of bacterial surveillance, 240 prevention, surveillance of, 275, RNA, 47; categories of HIV, 356; Active immunization, 465 287–289; Venezuelan, 277, 280–281 dengue fever, DHF, and DSS, 327– Acute glomerulonephritis, 119, 121, 126 Amoeba histolytica, 34 328; description of, 32; HAART, Acute Q fever, 15 Anaplasma phagocytophilum, 36, 76, 77, 48, 356–357, 382; hepatitis C virus Adaptive immunity, 40–42 84, 85, 86, 89, 90, 640–641, 645 (HCV), 391, 402–403; HHV-8 Adenocarcinoma of the lower Anaplasmosis, 552 and KS treatment using, 380–382; esophagus, 167–168 Andes virus, 442 SARS, 466–467. See also Interferons Adenovirus infection, 646–647 Anemia, 176, 528 Arenaviridae, 300 Aedes aegypti mosquito, 318, 322, Angiotensin-converting enzyme 2 Argentine hemorrhagic fever, 16–17, 328–329 (ACE-2), 463–464 35, 279–280 Aedes albopictus mosquito, 318, 322–323 Anopheles mosquitoes, 35, 525, 526, 537 Artemisinin, 535 Age-related immune system defects, Anthrax, 15, 670, 674–676 “Asian Flu” pandemic (type H2N2) 639–640, 642 Antibiotic action, 226, 228–229, 235– [1957], 413 Agglutination, 44 237. See also Antimicrobial agents; Aspergillus fungi,
    [Show full text]
  • Streptococcal Pharyngitis (Strep Throat)
    Streptococcal Pharyngitis (Strep Throat) Maria Pitaro, MD ore throat is a very common reason for a visit to a health care provider. While the major treatable pathogen is group A beta hemolytic Streptococcus (GAS), Sthis organism is responsible for only 15-30% of sore throat cases in children and 5-10% of cases in adults. Other pathogens that cause sore throat are viruses (about 50%), other bacteria (including Group C beta hemolytic Streptococci and Neisseria gonorrhea), Chlamydia, and Mycoplasma. In this era of increasing microbiologic resistance to antibiotics, the public health goal of all clinicians should be to avoid the inappropriate use of antibiotics and to target treatment to patients most likely to have infection due to GAS. Clinical Manifestations and chest and in the folds of the skin and usually Pharyngitis due to GAS varies in severity. The spares the face, palms, and soles. Flushing of the Streptococcal Pharyngitis most common presentation is an acute illness with cheeks and pallor around the mouth is common, (Strep Throat). sore throat, fever (often >101°F/38.3°C), tonsillar and the tongue becomes swollen, red, and mottled Inflammation of the exudates (pus on the tonsils), and tender cervical (“strawberry tongue”). Both skin and tongue may oropharynx with adenopathy (swollen glands). Patients may also have peel during recovery. petechiae, or small headache, malaise, and anorexia. Additional physical Pharyngitis due to GAS is usually a self-limited red spots, on the soft palate. examination findings may include petechiae of the condition with symptoms resolving in 2-5 days even Photo courtesy soft palate and a red, swollen uvula.
    [Show full text]
  • Annual Report of Infectious Diseases 2015
    Annual Report of Infectious Diseases 2015 Notes All incidence rates throughout the report are per 100,000 population based on the 2015 U.S. Census Bureau’s population data, gathered on July 6, 2016. Data for counties reporting fewer than five disease cases are not included to protect confidentiality of cases. Data for fewer than 20 reported disease cases are considered statistically unstable. Reports on HIV/AIDS, sexually transmitted infections and tuberculosis are published separately. Counts and rates for the 2015 annual report are not comparable to previous years, as changes were made to ensure case definitions match the National Notifiable Diseases list, which can be found at https://wwwn.cdc.gov/nndss/conditions/. Indiana’s reporting rule became effective December 25, 2015. While the requirements for what needs to be reported and when were updated, this report follows the reporting requirements of the previous rule. More information on the reporting rule can be found at http://www.in.gov/isdh/25366.htm. References American Academy of Pediatrics. In: Pickering LK, Baker CJ, Long SS, McMillan JA, eds. Red Book: 2012 Report of the Committee on Infectious Diseases. 29th ed. Elk Grove Village, IL: American Academy of Pediatrics, 2012. Centers for Disease Control and Prevention. Manual for the Surveillance of Vaccine-Preventable Diseases. Centers for Disease Control and Prevention, Atlanta, GA, 2008. Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. Hamborsky J, Kroger A, Wolfe S, eds. 13th ed. Washington DC: Public Health Foundation, 2015. Heyman, D.L. Control of Communicable Diseases Manual 20th ed.
    [Show full text]