Purification and Characterization of Two Bacteriocins from Lactobacillus

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Characterization of Two Bacteriocins from Lactobacillus J Korean Soc Appl Biol Chem (2015) 58(5):703–714 Online ISSN 2234-344X DOI 10.1007/s13765-015-0094-y Print ISSN 1738-2203 ARTICLE Purification and characterization of two bacteriocins from Lactobacillus brevis BK11 and Enterococcus faecalis BK61 showing anti-Helicobacter pylori activity Eun-Seo Lim1 Received: 9 April 2015 / Accepted: 15 June 2015 / Published online: 7 July 2015 Ó The Korean Society for Applied Biological Chemistry 2015 Abstract The aim of this study was to investigate the Keywords Adhesion Á Bacteriocin Á Enterococcus antimicrobial effects of purified bacteriocins isolated from faecalis Á Helicobacter pylori Á Lactobacillus brevis Á Lactobacillus brevis BK11 and Enterococcus faecalis Urease BK61 on Helicobacter pylori. After the final purification step, the molecular weights of the purified bacteriocins from L. brevis BK11 and E. faecalis BK61 were estimated Introduction to be approximately 6.5 and 4.5 kDa, respectively. Sig- nificant decrease in the antimicrobial activity of these The colonization of the mucus layer of the gastric epithelium bacteriocins was observed when they were treated with by Helicobacter pylori is the causative agent of gastric several proteolytic enzymes. However, their antimicrobial disorders such as gastritis, peptic ulcer, nonulcerous dys- activity was stable over long periods of storage and a wide pepsia, and possibly gastric cancer (Malaty and Nyren range of pH and was relatively heat resistant. The inhibi- 2003). The pathogenesis of H. pylori is caused by the tory spectrum of the bacteriocin produced by L. brevis adherence of pathogens against host tissue-specific cell BK11 strain was quite narrow, whereas the bacteriocin receptors, the production of bacterial urease, and cytotoxins produced from E. faecalis BK61 strain exhibited a broad such as VacA, CagA, and endotoxin, and the pathological antimicrobial spectrum against various foodborne patho- changes of gastric epithelial cells (Iwakura et al. 2007). At gens such as Listeria monocytogenes, Escherichia coli least one-third of the world’s population is infected with H. O157, and Salmonella enteritidis. Treatment of H. pylori pylori, so treatment of this pathogen infection is widely with these bacteriocins significantly reduced the number of recommended (Perez–Perez et al. 2004). cells of the pathogen found adhering to the monolayers of H. pylori eradication therapy with proton pump inhibi- cultured human gastric adenocarcinoma epithelial cell line tors and several antibiotics such as ranitidine bismuth (p \ 0.05). Furthermore, the urease activity of adherent H. citrate, amoxicillin, and clarithromycin has been widely pylori after treatment with the bacteriocins was lower than proposed, but these regimens have developed resistance that for the control group, but there appeared to be no strains of H. pylori (Malfertheiner et al. 2012). In addition, significant difference between the competition and dis- antibiotic-associated gastrointestinal side effects are diar- placement groups (p [ 0.05). rhea, nausea, vomiting, bloating, abdominal pain, and esophageal reflux, which were due to an increase in the gastric acidity (De Francesco et al. 2010). Hence, natural food substances, such as apple peel polyphenols and green tea extract, and probiotic foods fermented with lactic acid bacteria (LAB) can be used as an adjuvant for antibiotic- & Eun-Seo Lim antacid treatment to prevent the re-emergence of H. pylori [email protected] infection (Lee et al. 2009; Pastene et al. 2010). 1 Department of Food Science & Nutrition, Tongmyong A probiotic has been defined as a live microbial species, University, Busan 608-735, Republic of Korea which can have a positive effect on intestinal physiological 123 704 J Korean Soc Appl Biol Chem (2015) 58(5):703–714 functions with improved health conditions on the host bovine serum (FBS, Gibco BRL, USA), 0.2 % (w/v) 2,6- when administered in adequate amounts (FAO/WHO di-o-methyl-b-cyclodextrin (CD), and antibiotics (cefsu- 2001). Because probiotics including lactobacilli and bifi- lodine, vancomycin, trimethoprim, and amphotericin B, dobacteria are acid tolerant and able to persist in the Sigma) and the plate was incubated in a gas jar with a stomach longer than other bacteria, some LAB prepara- microaerophilic atmosphere (10 % CO2, Anoxomat sys- tions have been proved to play a crucial role of stabilizing tem, MART Co., Lichtenvoorde, Netherlands) for 48 h at intra-gastric micro-ecological environment (Zheng et al. 37 °C. The strain was maintained as frozen stock held at 2013). The search for new antimicrobial agents showed -80 °C in Brucella broth (Difco.) plus 20 % (v/v) that the implementation of standard anti-H. pylori regimens glycerol. with probiotic LAB could be able to improve mucosal inflammation in animals infected with H. pylori and sup- Purification of bacteriocin press the secretion of interleukin (IL)-8 in gastric cells infected by H. pylori, as they are able to improve the The LAB strains were grown in MRS broth (Difco.) at patient’s compliance by reducing antibiotic-associated 37 °C under aerobic conditions. The cell-free culture adverse events (Armuzzi et al. 2001; Nista et al. 2004). supernatant (CFCS) was derived from fresh overnight LAB LAB intended for antibacterial chemotherapy against cultures adjusted to 1.0 9 109 CFU of the bacteria per mL pathogens may be used as an adjuvant to antibiotic treat- by centrifugation (70009g for 10 min at 4 °C), neutralized ment to prevent the re-emergence of H. pylori infection, to the pH of 6.5 with 1 N NaOH in order to avoid acid side possibly through the inhibition of adherence, as well as by effects, and treated with catalase at a concentration of 200 producing metabolites and antimicrobial molecules (Jack unit/mL. CFCS was transferred in a cold chamber main- et al. 1995). tained at 4 °C and then the crude bacteriocins were In our previous study, the crude bacteriocins of Lacto- obtained by 50 % (w/v) saturated ammonium sulfate pre- bacillus brevis BK11 and Enterococcus faecalis BK61 cipitation overnight with stirring. The precipitated protein strains isolated from Baikkimchi dramatically decreased was separately collected by centrifugation (12,0009g for the viability of H. pylori (Lim 2014). The aim of the pre- 30 min at 4 °C) and suspended in 20 mM sodium phos- sent study was to determine the antimicrobial activity phate buffer (pH 6.5). The pellet containing the crude against H. pylori after purification of the bacteriocins bacteriocins was dialyzed twice against the same buffer for produced by these strains and to investigate the physico- 24 h at 4 °C using a dialysis bag (Spectrum Medical chemical properties, molecular weight, and antimicrobial Industries, Inc., USA) with a molecular weight cut-off of spectrum of the purified bacteriocins. Besides, their abili- 1000 Da for desalting. ties to expel H. pylori from human gastric adenocarcinoma For the bacteriocin purification of L. brevis BK11, epithelial cell line (AGS) and to inhibit the urease activity AKTA purifier-100 system (GE Healthcare, UK) equipped of this pathogen were evaluated. with HiPrep Q HP 16/10 column was used to further purify of the desalted crude bacteriocin. The system was equili- brated with 10 mM citric-phosphate buffer (pH 6.0). The Materials and methods crude bacteriocin solution was eluted by eluent buffer (1 M NaCl in equilibrium buffer) at flow rate of 5 mL/min and Culture conditions of LAB the elution procedure was monitored by UV detector at 280 nm. The eluted fractions were applied to Superdex The bacterial strains used in this study were L. brevis BK11 Peptide 10/300 GL column (GE Healthcare) equilibrated and E. faecalis BK61, which were isolated from with 50 mM trisodium phosphate buffer (pH 5.8). 0.15 M Baikkimchi and these strains showed the antimicrobial NaCl was used for elution at a flow rate of 1 mL/min. The activity in primary experiment. The stock culture collection fractions were automatically collected and pooled accord- of the two strains was maintained at -80 °C in Lactobacilli ing to UV absorbance at 215 nm. The active fractions were MRS broth (Difco., USA) with 20 % (v/v) glycerol, and finally purified by high-performance liquid chromatogra- regenerated twice before being used in the manipulations. phy (LC-8, Shimadzu, Japan) with a reversed-phase (RP) column of C-18 (10 lm, 300 A˚ , Macherey Nagel, France). Culture conditions of H. pylori The mobile phases were solvent A (water:acetonitrile:tri- fluoroacetic acid (TFA) = 95:5:0.1) and solvent B (ace- Helicobacter pylori American type culture collection tonitrile:TFA = 100:0.1). Sample elution program was as (ATCC) 43504 strain used in this study was obtained from follows: 100 % A for 5 min, A linearly decreased to 0 % ATCC. Before experiments, H. pylori was sub-cultured on and B increased to 100 % from 5 to 30 min, and finally B Brucella agar (Difco) plates containing 5 % (v/v) fetal increased to 100 % from 30 to 40 min. Flow rate was 123 J Korean Soc Appl Biol Chem (2015) 58(5):703–714 705 5 mL/min and absorbance was recorded at 280 nm by UV (50 % of the turbidity of the control culture without detector (Zhu et al. 2014). bacteriocin). For the bacteriocin purification of E. faecalis BK61, the desalted solution was subjected to cation exchange chro- Determination of molecular weight matography column [Carboxymethyl (CM) Sepharose (Pharmacia, Sweden)] equilibrated with 0.05 M sodium The molecular weight of the purified bacteriocins was acetate buffer (pH 5.5). Elution was performed at a flow determined using Tricine-sodium dodecyl sulfate–poly- rate of 1 mL/min with a linear gradient of 0–0.6 M NaCl in acrylamide gel electrophoresis described by Scha¨ger and 0.073 M sodium acetate buffer (pH 5.0). The active frac- Von Jagow (1987) with minor modifications. A low- tions were pooled and dialyzed against 20 mM sodium molecular-weight marker (TEFCO, Technical frontier, Co., phosphate buffer (pH 5.8).
Recommended publications
  • Characterization of a Lactobacillus Brevis Strain with Potential Oral Probiotic Properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3
    Fang et al. BMC Microbiology (2018) 18:221 https://doi.org/10.1186/s12866-018-1369-3 RESEARCHARTICLE Open Access Characterization of a Lactobacillus brevis strain with potential oral probiotic properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3 Abstract Background: The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health. Results: An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co- incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system. Conclusions: L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products. Keywords: Lactobacillus brevis, Antimicrobial activity, Hydrogen peroxide, Adhesion, Immunomodulation Background properties may prevent the colonization of oral patho- Oral infectious diseases, such as dental caries and peri- gens through different mechanisms.
    [Show full text]
  • Molecular Identification of Lactobacillus Hilgardii and Genetic Relatedness with Lactobacillus Brevis
    International Journal of Systematic Bacteriology (1 999). 49, 1075-1 081 Printed in Great Britain Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis Daniele Sohier, Joana Coulon and Aline Lonvaud-Funel Author for correspondence: Aline Lonvaud-Funel. Tel: +33 5 56 84 64 66. Fax: +33 5 56 84 64 68. e-mail : aline. lonvaud @ oenologie. u- bordeaux2.fr FacultC d'CEnologie-Unite Conventional phenotypic methods lead to misidentification of the lactic acid associCe INRA-U n iversite bacteria Lactobacillushilgardii and Lactobacillusbrevis. Random amplified Victor Segalen-Bordeaux 11, 351 Cows de la LibCration, polymorphic DNA (RAPD) and repetitive element PCR (REP-PCR) techniques 33405 Talence CCdex, were developed for a molecular study of these two species. The taxonomic France relationships were confirmed by analysis of the ribosomal operon. Amplified DNA fragments were chosen to isolate L. hilgardii-specific probes. In addition to rapid molecular methods for identification of L. hilgardii, these results convincingly proved that some strains first identified as L. brevis must be reclassified as L. hilgardii. The data clearly showed that these molecular methods are more efficient than phenotypic or biochemicalstudies for bacterial identification at the species level. I Keywords : Lactobacillus hilgardii, Lactobacillus brevis, RAPD, REP-PCR INTRODUCTION phenotypically close (Kandler & Weiss, 1986), they differ by their ability to ferment arabinose: L. brevis Lactic acid bacteria are responsible for malolactic can use this carbohydrate while L. hilgardii cannot. fermentation, an important step in winemaking et al., et al., In the present study, we intended to discriminate L. (Lafon-Lafourcade 1983; Renault 1988). hilgardii L. brevis However, some of them induce spoilage (Lonvaud- and by using molecular methods Funel & Joyeux, 1982; Lonvaud-Funel et al., 1990).
    [Show full text]
  • Characterization of Lactobacillus Brevis with Potential Probiotic Properties and Biofilm Inhibition Against Pseudomonas Aeruginosa †
    Proceedings Characterization of Lactobacillus brevis with Potential Probiotic Properties and Biofilm Inhibition against Pseudomonas aeruginosa † Vaishali Singh, Suman Ganger and Shweta Patil * Department of Microbiology, Vivekanand Education Society’s College of Arts, Science and Commerce, Mumbai 400071, Maharashtra, India; [email protected] (V.S.); [email protected] (S.G.) * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Microbiology, 2–30 November 2020; Available online: https://ecm2020.sciforum.net/. Published: 31 December 2020 Abstract: (1) Background: Probiotics are a live microbial supplement that improve hosts’ health by maintaining intestinal microbiota. The evidence suggests that probiotics can be used as a therapeutic strategy to improve overall digestive health. Lactic acid bacteria strains have been extensively used as probiotics. (2) Method: To isolate lactic acid bacteria with probiotic potential from food samples. Probiotic properties such as tolerance to low pH, bile, sodium chloride, lysozyme, antibiotic susceptibility, cell surface hydrophobicity, and antimicrobial activity were determined. (3) Results: Ten different isolates were examined to study their probiotic potential. In this study, Lactobacillus brevis was isolated and showed most of the probiotic properties, such as10% sodium chloride tolerance, 1% bile tolerance, growth in pH 2, and antimicrobial activity against E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Formation of biofilm by Klebsiella pneumoniae and Pseudomonas aeruginosa was also inhibited by cell free extracts of L. brevis, which reveals its therapeutic relevance. In addition, it was found to be stable at low temperature (4°C). (4) Conclusion: The above-mentioned results of L. brevis suggest that it has promising potential to be considered “probiotic”.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Diversity of Lactic Acid Bacteria on Organic Flours and Application of Isolates in Sourdough Fermentation
    D. Stanzer et al: Croatian Journal of Food Technology, Biotechnology 44 and Nutrition 12 (1-2), 44-51 (2017) ORIGINAL SCIENTIFIC PAPER Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation Damir Stanzer1, Ines Ivanuša1, Snježana Kazazić2, Karla Hanousek Čiča1, Jasna Mrvčić1* 1 Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10 000 Zagreb, Croatia 2 Laboratory for chemical kinetics and atmospheric chemistry, „Ruder Boškovic“ Institute, Bijenicka 54, 10 000 Zagreb, Croatia * Corresponding author: [email protected] Abstract Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in orga- nically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determined by high performance liquid chromatography, while the antifungal activity was determined using an overlay agar method. Wheat flours showed less microbial biodiversity than the rye and spelt flours. The most common genera in the tested flour were Lactobacillus, Pediococcus and Enterococcus. Isolated Lactobacillus farciminis, Pediococcus pentosaceus, Leuconostoc citreum and Lactobacillus brevis showed the best acidification activity. Lactobacillus brevis, Pediococcus pentosa- ceus, Weissella cibaria and Lactobacillus farciminis showed significant antifungal activity against A. niger 357 and Penicillium sp. 505. The prefermented medium of Lactobacillus farciminis were characterized by high content of lactic and phenyllactic acid. Keywords: organic cereals, species diversity, Lactobacillus, sourdough, spelt Introduction mented dairy, vegetables or meat products as well as in bread production.
    [Show full text]
  • Assessment of Antibiotic Resistance in Starter and Non-Starter Lactobacilli of Food Origin
    ACTA VET. BRNO 2020, 89: 401–411; https://doi.org/10.2754/avb202089040401 Assessment of antibiotic resistance in starter and non-starter lactobacilli of food origin Marta Dušková1,2, Monika Morávková1, Jakub Mrázek3, Martina Florianová1, Lenka Vorlová2, Renáta Karpíšková1,2 1Veterinary Research Institute, Brno, Czech Republic 2University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Origin Food and Gastronomic Sciences, Brno, Czech Republic 3Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Prague, Czech Republic Received June 1, 2020 Accepted December 21, 2020 Abstract The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L.
    [Show full text]
  • Characterization of Commercial Probiotics: Antibiotic Resistance
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Food Science and Technology Department Science and Technology 8-2014 Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization Carmen Lucia Cano Roca University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodscidiss Part of the Food Microbiology Commons Cano Roca, Carmen Lucia, "Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization" (2014). Dissertations, Theses, & Student Research in Food Science and Technology. 46. http://digitalcommons.unl.edu/foodscidiss/46 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization by Carmen Lucia Cano Roca A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the Supervision of Professor Jayne E. Stratton Lincoln, Nebraska August, 2014 ii Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization Carmen Lucia Cano Roca, M.S. University of Nebraska, 2014 Adviser: Jayne Stratton Probiotics, live microorganisms that beneficially affect the health of their host, must undergo extensive research to ensure they are safe for consumption and possess certain functional properties.
    [Show full text]
  • Influence of Cultural Conditions on the Production of Bacteriocin by Lactobacillus Brevis OG1
    African Journal of Biotechnology Vol. 2 (7), pp. 179–184, July 2003 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2003 Academic Journals Full Length Research Paper Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1 S.T. Ogunbanwo*, A.I. Sanni, and A. A. Onilude Department of Botany and Microbiology, University of Ibadan, Nigeria Accepted 5 June 2003 Bacteriocin produced by Lactobacillus brevis OG1 has large spectrum of inhibition against pathogenic, food spoilage microorganisms and various Lactic acid bacteria employed as test strains. The bacteriocin inhibited E coli NCTC 10418 and Enterococcus faecalis, but did not inhibit Candida albicans ATCC 10231 and Klebsiella sp. UCH 15. The antibacterial activity appeared to be pronounced between early logarithmic and early stationary phase. Supplementation and/or replacement of nutrients demonstrated that larger quantities of bacteriocin could be produced by addition of yeast extracts (3.0%), NaCl (1.0-2.0%), glucose (1.0 %) and Tween 80 (0.5%), while addition of tri-ammonium citrate, sodium acetate, magnesium sulphate, manganese sulphate and potassium phosphate had no effect on production. Maximal activity in composed medium was achieved at initial pH of 5.5, and incubation period of 48h at 30-370C. Key words: Bacteriocin, growth media, Lactobacillus brevis OG1, indicator organisms, antagonistic activity. INTRODUCTION Lactobacilli are important organisms recognized for their both Gram-positive and Gram-negative bacteria (Tagg et fermentative ability as well as their health and nutritional al., 1976). benefits (Gilliland, 1990). They produce various Research on bacteriocins from lactic acid bacteria has compounds such as organic acids, diacetyl, hydrogen expanded during the last decades, to include the use of peroxide, and bacteriocin or bactericidal proteins during bacteriocins or the producer organisms as natural food lactic fermentations (Lindgren and Dobrogosz, 1990).
    [Show full text]
  • Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students
    nutrients Article Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students Laura Márquez-Morales 1 , Elie G. El-Kassis 1 , Judith Cavazos-Arroyo 2 , Valeria Rocha-Rocha 1, Fidel Martínez-Gutiérrez 3 and Beatriz Pérez-Armendáriz 1,* 1 Biological Science Department, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico; [email protected] (L.M.-M.); [email protected] (E.G.E.-K.); [email protected] (V.R.-R.) 2 Social Science Department, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico; [email protected] 3 Center for Research in Health Sciences and Biomedicine, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78290, Mexico; fi[email protected] * Correspondence: [email protected]; Tel.: +52-(222)-2299400 (ext. 7774) Abstract: Dysbiosis of the gut microbiota has been associated with different illnesses and emotional disorders such as stress. Traditional fermented foods that are rich in probiotics suggest modulation of dysbiosis, which protects against stress-induced disorders. The academic stress was evaluated in medical students using the SISCO Inventory of Academic Stress before and after ingestion of an aguamiel-based beverage fermented with Lactobacillus plantarum, Lactobacillus paracasei and Lactobacil- Citation: Márquez-Morales, L.; lus brevis (n = 27) and a control group (n = 18). In addition, microbial phyla in feces were quantified El-Kassis, E.G.; Cavazos-Arroyo, J.; by qPCR. The results showed that the consumption of 100 mL of a beverage fermented with lactic Rocha-Rocha, V.; Martínez-Gutiérrez, acid bacteria (3 × 108 cfu/mL) for 8 weeks significantly reduced academic stress (p = 0.001), while the F.; Pérez-Armendáriz, B.
    [Show full text]
  • Microbiological and Chemical Profile of Sugar Cane Silage
    Animal Feed Science and Technology 195 (2014) 1–13 Contents lists available at ScienceDirect Animal Feed Science and Technology journal homepage: www.elsevier.com/locate/anifeedsci Microbiological and chemical profile of sugar cane silage fermentation inoculated with wild strains of lactic acid bacteria a b,∗ b b a B.F. Carvalho , C.L.S. Ávila , J.C. Pinto , J. Neri , R.F. Schwan a Department of Biology, Federal University of Lavras, Campus Universitário, 37200-000 Lavras, MG, Brazil b Department of Animal Science, Federal University of Lavras, Campus Universitário, 37200-000 Lavras, MG, Brazil a r t i c l e i n f o a b s t r a c t Article history: During sugar cane ensilage an intense growth of yeasts can result in high dry matter (DM) Received 9 September 2013 loss and reduction in the quality of the feed. The aim of this study was to evaluate the fer- Received in revised form 7 April 2014 mentation profile of sugar cane (Saccharum spp.) silage inoculated with new strains of lactic Accepted 11 April 2014 acid bacteria (LAB) screened for this forage silage. Fourteen wild LAB strains were evalu- ated, biochemically (API 50 CHL, BioMérieux) characterized, and identified by sequencing Keywords: of 16S rDNA. The wild isolates were identified as Lactobacillus plantarum, Lactobacillus bre- Lactobacillus plantarum vis, and Lactobacillus hilgardii. Different fermentation profiles were observed among strains Lactobacillus brevis of the same species. The silages inoculated with L. plantarum species showed the highest Lactobacillus hilgardii yeast population (5.97 log CFU/g silage), ethanol concentration (137 g kg/silage) and DM loss Volatile fatty acids (20.6%) (P<0.01), therefore, they were not beneficial for sugar cane silage.
    [Show full text]
  • Isolation and Characterization of Lactic Acid Bacteria and Yeasts from the Brazilian Grape Sourdough
    Brazilian Journal of Pharmaceutical Sciences vol. 50, n. 2, apr./jun., 2014 Article http://dx.doi.org/10.1590/S1984-82502014000200011 Isolation and characterization of lactic acid bacteria and yeasts from the Brazilian grape sourdough Krischina Singer Aplevicz1,*, Jaciara Zarpellon Mazo1, Eunice Cassanego Ilha2, Andréia Zilio Dinon3, Ernani Sebastião Sant´Anna2 1Department Teaching, Research and Extension, Federal Institute of Santa Catarina, Florianopolis, SC, Brazil,2Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil, 3Department of Engineering of Food, Staty University of Santa Catarina, Florianopolis, SC, Brazil Sourdough is a mixture of flour and water fermented by lactic acid bacteria and yeast, with a large use in bakery products. This study was developed with Brazilian grape (Niagara rosada) sourdough obtained from spontaneous fermentation. The aim of this work was to characterize genotypic and phenotypically lactic acid bacteria and yeasts isolated from sourdough. The phenotypic identification for bacteria and yeasts was performed by using the kit API50CHL and 20CAUX and the genotypic characterization was performed by sequencing method. A total of four isolated strains were analyzed in this study. Two of these strains were phenotypically and genotypic identified as Lactobacillus paracasei and one as Saccharomyces cerevisiae. Another sample phenotypically identified asCandida pelliculosa did not show the same identity by sequencing. It shows the need to use phenotypic and genotypic characterization associated for the correct microorganism identification. Uniterms: Spontaneous fermentation. Sourdough. Brazilian grape/sourdough .Niagara rosada/sourdough. Lactic acid bacteria/phenotypic characterization. Lactic acid bacteria/genotypic characterization. Yeast/ phenotypic characterization. Yeast/ genotypic characterization. Fermento natural é mistura de farinha e água fermentada por bactérias láticas e leveduras, amplamente utilizada em produtos de panificação.
    [Show full text]
  • Antimicrobial Compounds Produced by Probiotic Lactobacillus Brevis Isolated from Dairy Products
    Ann Microbiol (2013) 63:81–90 DOI 10.1007/s13213-012-0447-2 ORIGINAL ARTICLE Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products Abeer Ahmed Rushdy & Eman Zakaria Gomaa Received: 13 September 2011 /Accepted: 29 February 2012 /Published online: 17 March 2012 # Springer-Verlag and the University of Milan 2012 Abstract A total of 38 lactic acid bacteria, belonging to Keywords Lactic acid bacteria . Lactobacillus brevis . Lactobacillus, isolated from 24 samples of traditional Egyp- Antimicrobial activity. Bacteriocin-like compound . tian dairy products, were screened for antimicrobial activity Probiotics . Dairy products against different Gram-positive and Gram-negative bacteria. A strain of Lactobacillus brevis showed the best inhibitory activity when tested by well diffusion assay. The antibacte- Introduction rial activity was pronounced between early logarithmic and early stationary phases. The strain produced a heat-stable The lactic acid bacteria (LAB) family is composed of a antimicrobial compound showing no reduction in activity heterogeneous group of Gram-positive, non-spore-forming, after heat treatment from 60 to 100°C for 15 and 30 min. catalase- and cytochrome-negative, anaerobic or aerotoler- Since it was inactivated by proteolytic enzymes, it is con- ant bacteria (Axelsson 1998). LAB consist of a number of sidered to be proteinaceous in nature and, therefore, referred bacterial genera within the phylum Firmicutes. Recent tax- to as a bacteriocin-like substance. This compound was also onomic studies have suggested that the LAB group includes active over a wide pH range (pH 2–6). The antimicrobial 13 genera (Carr et al. 2002). The antimicrobial effects and compound was partially purified by 40% ammonium sulfate safety of some genera of LAB, such as Lactobacillus and precipitation.
    [Show full text]