Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students

Total Page:16

File Type:pdf, Size:1020Kb

Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students nutrients Article Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students Laura Márquez-Morales 1 , Elie G. El-Kassis 1 , Judith Cavazos-Arroyo 2 , Valeria Rocha-Rocha 1, Fidel Martínez-Gutiérrez 3 and Beatriz Pérez-Armendáriz 1,* 1 Biological Science Department, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico; [email protected] (L.M.-M.); [email protected] (E.G.E.-K.); [email protected] (V.R.-R.) 2 Social Science Department, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico; [email protected] 3 Center for Research in Health Sciences and Biomedicine, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78290, Mexico; fi[email protected] * Correspondence: [email protected]; Tel.: +52-(222)-2299400 (ext. 7774) Abstract: Dysbiosis of the gut microbiota has been associated with different illnesses and emotional disorders such as stress. Traditional fermented foods that are rich in probiotics suggest modulation of dysbiosis, which protects against stress-induced disorders. The academic stress was evaluated in medical students using the SISCO Inventory of Academic Stress before and after ingestion of an aguamiel-based beverage fermented with Lactobacillus plantarum, Lactobacillus paracasei and Lactobacil- Citation: Márquez-Morales, L.; lus brevis (n = 27) and a control group (n = 18). In addition, microbial phyla in feces were quantified El-Kassis, E.G.; Cavazos-Arroyo, J.; by qPCR. The results showed that the consumption of 100 mL of a beverage fermented with lactic Rocha-Rocha, V.; Martínez-Gutiérrez, acid bacteria (3 × 108 cfu/mL) for 8 weeks significantly reduced academic stress (p = 0.001), while the F.; Pérez-Armendáriz, B. Effect of the Intake of a Traditional Mexican control group (placebo intervention) had no significant changes in the perception of academic stress Beverage Fermented with Lactic Acid (p = 0.607). Significant change (p = 0.001) was shown in the scores for environmental demands, and Bacteria on Academic Stress in physical and psychological factors. Consumption of the fermented beverage significantly increased Medical Students. Nutrients 2021, 13, the phyla Firmicutes and Bacteroidetes but not Gammaproteobacteria. No significant changes were 1551. https://doi.org/10.3390/ found in the control group, except for a slight increase in the phylum Firmicutes. The intake of this nu13051551 fermented beverage suggest a modulation of gut microbiota and possible reduction in stress-related symptoms in university students, without changing their lifestyle or diet. Academic Editor: Alessandra Bordoni Keywords: aguamiel; academic stress; lactic acid bacteria; dysbiosis; gut microbiota; medical students Received: 31 March 2021 Accepted: 26 April 2021 Published: 5 May 2021 1. Introduction Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in Various studies have shown that gut microbiota are linked to stress due to the constant, published maps and institutional affil- bidirectional communication on the microbiota–gut–brain axis [1–3]. However, the totality iations. of communication pathways has yet to be detected, which is a challenge for future studies. Synbiotics, probiotics and prebiotics appear to have the ability to modulate microbiota, which have a close relationship with axis communication and its effect on stress reduction. Gut microbiota are seen to be altered by stress and produce communication inconsis- tencies on the gut microbiota–brain axis when stress becomes chronic [4]. Experiencing Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. stress has been shown to release cortisol, which activates the hypothalamic–pituitary– This article is an open access article adrenal axis (HPA) [5]. The hypothalamus sends signals that activate the secretion of distributed under the terms and corticotropin releasing hormone (CRH), which, in turn, triggers the release of the adreno- conditions of the Creative Commons corticotropic hormone (ACTH) leading to the secretion of glucocorticoids in the adrenal Attribution (CC BY) license (https:// cortex [6]. As a result, norepinephrine and dopamine are released [7], causing an imbalance creativecommons.org/licenses/by/ in the composition of the gut microbiota and, with that, in the gut bacterial phyla, and 4.0/). neuronal alterations [8,9]. Nutrients 2021, 13, 1551. https://doi.org/10.3390/nu13051551 https://www.mdpi.com/journal/nutrients Nutrients 2021, 13, 1551 2 of 18 The gut microbiota can be defined as the community of microorganisms and viruses, whose concentration is estimated to be approximately in the order of 1013–1014 and which interact synbiotically in the human intestine [10–12]. Representative phyla of the gut microbiota include Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Archaea, Fu- sobacteria and Verrucomicrobiota [13–15]. Previous studies have shown that the genera Lactobacillus and Bifidobacteria, belonging to the phyla Firmicutes and Actinobacteria, re- spectively, are producers of gamma-aminobutiric acid and serotonin [16], both of which are altered in stressed individuals [17], causing dysbiosis characterized by the growth of enterobacteriaceae capable of producing norepinephrine [18,19]. This leads to a stress feedback loop. These bacterial changes in the gut microbiota can lead to depression and anxiety [20,21], impairment of memory and reasoning [22,23], sleep disorders [24] and irritable bowel syndrome [25], all of which have been detected in university students. In recent years, medical students have been reported to present particularly high stress levels due to being exposed to many academic demands [26–28]. Preclinical stud- ies have shown that stool samples, obtained from university students after a high-stress situation such as an examination period, evidenced a marked reduction in lactic acid mi- croorganisms [29,30] (Figure1). Another clinical study showed that subjects suffering from stress-related irritable bowel syndrome presented an increase in the phyla Proteobacteria and Barnesiella, but a decrease in Firmicutes and Bacteroidetes [31]. In addition, people in a state of depression—a mental illness that, on many occasions, presents in stressed students—showed an increase in Bacteroidetes, Proteobacteria and Actinobacteria and a decrease in Firmicutes [32]. In animal studies, dysbiosis has also been observed in gut microbiota when subjects were exposed to social disruption [33,34]. Recent studies have sought to restore balance to the gut microbiota through synbiotic foods that appear to have a beneficial effect on human health and the neuronal functions of the brain [35]. Synbiotics are a mix of probiotics and prebiotics. Probiotics are living microorganisms which, at the right dose, improve health. Prebiotics, in contrast, are substances which cannot be digested by the body, but which induce the growth and activity of probiotics [36]. Earlier studies of interventions with Lactobacillus casei Shirota probiotics have demon- strated a reduction in stress as well as favorable effects on intestinal dysfunction problems and changes in the microbial diversity of the gut [37]. Analysis of the consumption of the synbiotic Ecologic®825, which contains different strains of Lactobacillus and Bifidobacteria, evidenced changes in emotional memory, reasoning and emotional decision-making [38], abilities that are diminished under stress. Meanwhile, sleep quality and symptoms of anxiety and depression in stressed students were improved with the use of heat-activated Lactobacillus gasseri strain CP2305. Furthermore, an increase was shown in the genus Bifi- dobacterium, as well as a reduction in streptococci [39]. On the other hand, nine lyophilized strains of the genera Lactobacillus and Bifidobacterium, in the synbiotic Ecologic®Barrier, improve cognition in depressed university students, without reducing depression [40]. Recently, there has been a great interest in demonstrating the relationship of prebiotic and probiotic consumption on mental health, as shown in Table1. Previous studies have shown that traditional fermented foods are a good source of pro- biotics and prebiotics that can modulate the gut microbiota [48,49]. In Mexico, pulque, a pre- Hispanic millennial drink, is a good source of lactic acid bacteria (LAB) [50,51]. Aguamiel is rich in fiber, which acts as a prebiotic, and contains fructooligosaccharides—short polymers of fructose (inulin)—which promote the survival of probiotics in the colon [52]. Aguamiel can also help regulate the gut microbiota [53]. There are few studies of experimental inter- ventions with synbiotics made from products such as pulque and Aguamiel, particularly in stressed university students. Nutrients 2021, 13, x FOR PEER REVIEW 2 of 20 cotropin releasing hormone (CRH), which, in turn, triggers the release of the adrenocorti- cotropic hormone (ACTH) leading to the secretion of glucocorticoids in the adrenal cortex [6]. As a result, norepinephrine and dopamine are released [7], causing an imbalance in the composition of the gut microbiota and, with that, in the gut bacterial phyla, and neu- ronal alterations [8,9]. The gut microbiota can be defined as the community of microorganisms and viruses, whose concentration is estimated to be approximately in the order of 1013–1014 and which interact synbiotically in the human intestine [10–12]. Representative phyla of the gut mi- crobiota include
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Lactobacillus Helveticus and Bifidobacterium Longum
    www.nature.com/scientificreports OPEN Ingestion of probiotic (Lactobacillus helveticus and Bifdobacterium longum) alters intestinal microbial structure and behavioral expression following social defeat stress Katherine A. Partrick1, Anna M. Rosenhauer1, Jérémie Auger2, Amanda R. Arnold1, Nicole M. Ronczkowski1, Lanaya M. Jackson1, Magen N. Lord1, Sara M. Abdulla1, Benoit Chassaing1,3,4 & Kim L. Huhman1* Social stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifdobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two diferent doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-infammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, signifcantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-infammatory profle but that these changes may not promote reductions in behavioral responses to social stress. Te human gastrointestinal tract houses a vastly abundant community of microorganisms, and it has become increasingly clear that the state of this microbial community can meaningfully impact disease states 1–3.
    [Show full text]
  • Supplementation with Combined Lactobacillus Helveticus R0052 And
    microorganisms Article Supplementation with Combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 Across Development Reveals Sex Differences in Physiological and Behavioural Effects of Western Diet in Long–Evans Rats Elizabeth M. Myles 1,* , M. Elizabeth O’Leary 1, Rylan Smith 1, Chad W. MacPherson 2, Alexandra Oprea 1, Emma H. Melanson 1, Thomas A. Tompkins 2 and Tara S. Perrot 1,3,* 1 Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada; [email protected] (M.E.O.); [email protected] (R.S.); [email protected] (A.O.); [email protected] (E.H.M.) 2 Rosell®Institute for Microbiome and Probiotics, 6100 Ave. Royalmount, Montreal, QC H4P 2R2, Canada; [email protected] (C.W.M.); [email protected] (T.A.T.) 3 Brain Repair Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] (E.M.M.); [email protected] (T.S.P.) Received: 10 September 2020; Accepted: 2 October 2020; Published: 5 October 2020 Abstract: The gut microbiome affects various physiological and psychological processes in animals and humans, and environmental influences profoundly impact its composition. Disorders such as anxiety, obesity, and inflammation have been associated with certain microbiome compositions, which may be modulated in early life. In 62 Long–Evans rats, we characterised the effects of lifelong Bifidobacterium longum R0175 and Lactobacillus helveticus R0052 administration—along with Western diet exposure—on later anxiety, metabolic consequences, and inflammation. We found that the probiotic formulation altered specific anxiety-like behaviours in adulthood. We further show distinct sex differences in metabolic measures.
    [Show full text]
  • Characterization of a Lactobacillus Brevis Strain with Potential Oral Probiotic Properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3
    Fang et al. BMC Microbiology (2018) 18:221 https://doi.org/10.1186/s12866-018-1369-3 RESEARCHARTICLE Open Access Characterization of a Lactobacillus brevis strain with potential oral probiotic properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3 Abstract Background: The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health. Results: An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co- incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system. Conclusions: L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products. Keywords: Lactobacillus brevis, Antimicrobial activity, Hydrogen peroxide, Adhesion, Immunomodulation Background properties may prevent the colonization of oral patho- Oral infectious diseases, such as dental caries and peri- gens through different mechanisms.
    [Show full text]
  • Molecular Identification of Lactobacillus Hilgardii and Genetic Relatedness with Lactobacillus Brevis
    International Journal of Systematic Bacteriology (1 999). 49, 1075-1 081 Printed in Great Britain Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis Daniele Sohier, Joana Coulon and Aline Lonvaud-Funel Author for correspondence: Aline Lonvaud-Funel. Tel: +33 5 56 84 64 66. Fax: +33 5 56 84 64 68. e-mail : aline. lonvaud @ oenologie. u- bordeaux2.fr FacultC d'CEnologie-Unite Conventional phenotypic methods lead to misidentification of the lactic acid associCe INRA-U n iversite bacteria Lactobacillushilgardii and Lactobacillusbrevis. Random amplified Victor Segalen-Bordeaux 11, 351 Cows de la LibCration, polymorphic DNA (RAPD) and repetitive element PCR (REP-PCR) techniques 33405 Talence CCdex, were developed for a molecular study of these two species. The taxonomic France relationships were confirmed by analysis of the ribosomal operon. Amplified DNA fragments were chosen to isolate L. hilgardii-specific probes. In addition to rapid molecular methods for identification of L. hilgardii, these results convincingly proved that some strains first identified as L. brevis must be reclassified as L. hilgardii. The data clearly showed that these molecular methods are more efficient than phenotypic or biochemicalstudies for bacterial identification at the species level. I Keywords : Lactobacillus hilgardii, Lactobacillus brevis, RAPD, REP-PCR INTRODUCTION phenotypically close (Kandler & Weiss, 1986), they differ by their ability to ferment arabinose: L. brevis Lactic acid bacteria are responsible for malolactic can use this carbohydrate while L. hilgardii cannot. fermentation, an important step in winemaking et al., et al., In the present study, we intended to discriminate L. (Lafon-Lafourcade 1983; Renault 1988). hilgardii L. brevis However, some of them induce spoilage (Lonvaud- and by using molecular methods Funel & Joyeux, 1982; Lonvaud-Funel et al., 1990).
    [Show full text]
  • Mismatch Between Probiotic Benefits in Trials Versus Food Products
    nutrients Article Mismatch between Probiotic Benefits in Trials versus Food Products Mary J. Scourboutakos 1, Beatriz Franco-Arellano 1, Sarah A. Murphy 1, Sheida Norsen 1, Elena M. Comelli 1,2,* and Mary R. L’Abbé 1,2,* 1 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M1E 3S1, Canada; [email protected] (M.J.S.); [email protected] (B.F.-A.); [email protected] (S.A.M.); [email protected] (S.N.) 2 Center for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, ON M1E 3S1, Canada * Correspondence: [email protected] (E.M.C.); [email protected] (M.R.L.); Tel.: +1-416-978-6284 (E.M.C.); +1-416-978-7235 (M.R.L.) Received: 10 February 2017; Accepted: 6 April 2017; Published: 19 April 2017 Abstract: Probiotic food products contain a variety of different bacterial strains and may offer different health effects. The objective was to document the prevalence and dosage of probiotic strains in the Canadian food supply and to review the literature investigating these strains in order to understand what health benefits these products may offer. The Food Label Information Program was used to identify probiotic-containing products in the food supply. PubMed, Web of Science, and Embase were searched for randomized controlled trials that tested the health effects of these strains in humans. There were six probiotic strains/strain combinations identified in the food supply. Thirty-one studies investigated these strains and found that they are associated with decreased diarrhea and constipation, improved digestive symptoms, glycemic control, antioxidant status, blood lipids, oral health, and infant breastfeeding outcomes, as well as enhanced immunity and support for Helicobacter pylori eradication.
    [Show full text]
  • Geriatric Respondents and Non-Respondents to Probiotic Intervention Can Be Differentiated by Inherent Gut Microbiome Composition
    ORIGINAL RESEARCH published: 08 September 2015 doi: 10.3389/fmicb.2015.00944 Geriatric respondents and non-respondents to probiotic intervention can be differentiated by inherent gut microbiome composition Suja Senan 1, Jashbhai B. Prajapati 2*, Chaitanya G. Joshi 3, Sreeja V. 2, Manisha K. Gohel 4, Sunil Trivedi 5, Rupal M. Patel 5, Himanshu Pandya 6, Uday Shankar Singh 4, Ajay Phatak 7 and Hasmukh A. Patel 1 1 Department of Dairy Science, South Dakota State University, Brookings, SD, USA, 2 Department of Dairy Microbiology, Anand Agricultural University, Anand, India, 3 Department of Animal Biotechnology, Anand Agricultural University, Anand, India, 4 Department of Community Medicine, H. M Patel Center for Medical Care and Education, Karamsad, India, 5 Department of Edited by: Microbiology, H. M Patel Center for Medical Care and Education, Karamsad, India, 6 Department of Medicine, H. M Patel Center Kate Howell, for Medical Care and Education, Karamsad, India, 7 Central Research Services, Charutar Arogya Mandal, Karamsad, India University of Melbourne, Australia Reviewed by: Scope: Probiotic interventions are known to have been shown to influence the Stella Maris Reginensi Rivera, Universidad de la República Oriental composition of the intestinal microbiota in geriatrics. The growing concern is the apparent del Uruguay, Uruguay variation in response to identical strain dosage among human volunteers. One factor that Amit Kumar Tyagi, governs this variation is the host gut microbiome. In this study, we attempted to define a The University of Texas MD Anderson Cancer Center, USA core gut metagenome, which could act as a predisposition signature marker of inherent *Correspondence: bacterial community that can help predict the success of a probiotic intervention.
    [Show full text]
  • Probiotic Lactobacillus Fermentum Strain JDFM216 Improves Cognitive
    www.nature.com/scientificreports OPEN Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota Mi Ri Park1,8, Minhye Shin2,8, Daye Mun2, Seong‑Yeop Jeong3, Do‑Youn Jeong3, Minho Song4, Gwangpyo Ko5, Tatsuya Unno5,6, Younghoon Kim2* & Sangnam Oh7* Increasing evidence indicates that alterations in gut microbiota are associated with mammalian development and physiology. The gut microbiota has been proposed as an essential player in metabolic diseases including brain health. This study aimed to determine the impact of probiotics on degenerative changes in the gut microbiota and cognitive behavior. Assessment of various behavioral and physiological functions was performed using Y‑maze tests, wheel running tests, accelerated rotarod tests, balance beam tests, and forced swimming tests (FSTs), using adult mice after 50 weeks of administering living probiotic bacterium Lactobacillus fermentum strain JDFM216 or a vehicle. Immunomodulatory function was investigated using immune organs, immune cells and immune molecules in the mice, and gut microbiota was also evaluated in their feces. Notably, the L. fermentum JDFM216‑treated group showed signifcantly better performance in the behavior tests (P < 0.05) as well as improved phagocytic activity of macrophages, enhanced sIgA production, and stimulated immune cells (P < 0.05). In aged mice, we observed decreases in species belonging to the Porphyromonadaceae family and the Lactobacillus genus when compared to young mice. While administering the supplementation of L. fermentum JDFM216 to aged mice did not shift the whole gut microbiota, the abundance of Lactobacillus species was signifcantly increased (P < 0.05). Our fndings suggested that L. fermentum JDFM216 also provided benefcial efects on the regulation of immune responses, which has promising implications for functional foods.
    [Show full text]
  • Characterization of Lactobacillus Brevis with Potential Probiotic Properties and Biofilm Inhibition Against Pseudomonas Aeruginosa †
    Proceedings Characterization of Lactobacillus brevis with Potential Probiotic Properties and Biofilm Inhibition against Pseudomonas aeruginosa † Vaishali Singh, Suman Ganger and Shweta Patil * Department of Microbiology, Vivekanand Education Society’s College of Arts, Science and Commerce, Mumbai 400071, Maharashtra, India; [email protected] (V.S.); [email protected] (S.G.) * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Microbiology, 2–30 November 2020; Available online: https://ecm2020.sciforum.net/. Published: 31 December 2020 Abstract: (1) Background: Probiotics are a live microbial supplement that improve hosts’ health by maintaining intestinal microbiota. The evidence suggests that probiotics can be used as a therapeutic strategy to improve overall digestive health. Lactic acid bacteria strains have been extensively used as probiotics. (2) Method: To isolate lactic acid bacteria with probiotic potential from food samples. Probiotic properties such as tolerance to low pH, bile, sodium chloride, lysozyme, antibiotic susceptibility, cell surface hydrophobicity, and antimicrobial activity were determined. (3) Results: Ten different isolates were examined to study their probiotic potential. In this study, Lactobacillus brevis was isolated and showed most of the probiotic properties, such as10% sodium chloride tolerance, 1% bile tolerance, growth in pH 2, and antimicrobial activity against E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Formation of biofilm by Klebsiella pneumoniae and Pseudomonas aeruginosa was also inhibited by cell free extracts of L. brevis, which reveals its therapeutic relevance. In addition, it was found to be stable at low temperature (4°C). (4) Conclusion: The above-mentioned results of L. brevis suggest that it has promising potential to be considered “probiotic”.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Diversity of Lactic Acid Bacteria on Organic Flours and Application of Isolates in Sourdough Fermentation
    D. Stanzer et al: Croatian Journal of Food Technology, Biotechnology 44 and Nutrition 12 (1-2), 44-51 (2017) ORIGINAL SCIENTIFIC PAPER Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation Damir Stanzer1, Ines Ivanuša1, Snježana Kazazić2, Karla Hanousek Čiča1, Jasna Mrvčić1* 1 Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10 000 Zagreb, Croatia 2 Laboratory for chemical kinetics and atmospheric chemistry, „Ruder Boškovic“ Institute, Bijenicka 54, 10 000 Zagreb, Croatia * Corresponding author: [email protected] Abstract Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in orga- nically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determined by high performance liquid chromatography, while the antifungal activity was determined using an overlay agar method. Wheat flours showed less microbial biodiversity than the rye and spelt flours. The most common genera in the tested flour were Lactobacillus, Pediococcus and Enterococcus. Isolated Lactobacillus farciminis, Pediococcus pentosaceus, Leuconostoc citreum and Lactobacillus brevis showed the best acidification activity. Lactobacillus brevis, Pediococcus pentosa- ceus, Weissella cibaria and Lactobacillus farciminis showed significant antifungal activity against A. niger 357 and Penicillium sp. 505. The prefermented medium of Lactobacillus farciminis were characterized by high content of lactic and phenyllactic acid. Keywords: organic cereals, species diversity, Lactobacillus, sourdough, spelt Introduction mented dairy, vegetables or meat products as well as in bread production.
    [Show full text]
  • Assessment of Antibiotic Resistance in Starter and Non-Starter Lactobacilli of Food Origin
    ACTA VET. BRNO 2020, 89: 401–411; https://doi.org/10.2754/avb202089040401 Assessment of antibiotic resistance in starter and non-starter lactobacilli of food origin Marta Dušková1,2, Monika Morávková1, Jakub Mrázek3, Martina Florianová1, Lenka Vorlová2, Renáta Karpíšková1,2 1Veterinary Research Institute, Brno, Czech Republic 2University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Origin Food and Gastronomic Sciences, Brno, Czech Republic 3Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Prague, Czech Republic Received June 1, 2020 Accepted December 21, 2020 Abstract The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L.
    [Show full text]