Innovative Use of Non-Saccharomyces in Bio-Protection: T

Total Page:16

File Type:pdf, Size:1020Kb

Innovative Use of Non-Saccharomyces in Bio-Protection: T REPORT Innovative Use of Non-Saccharomyces in Bio-Protection: T. delbrueckii and M. pulcherrima Applied to a Machine Harvester Summary 1 Leticia Chacon-Rodriguez, Goals: 1 C.M. Lucy Joseph, organic wines, along with the need for improved worker safety. Winemakers 2 Bastien Nazaris, continue This to searchstudy addresses for alternatives the increasing to SO as demand an antioxidant for “natural” and antimicrobial and certified Joana Coulon,2 2 agent. This study compares the use of blended non-Saccharomyces cerevisiae Shaun Richardson,3 yeasts—Torulaspora delbrueckii (Td) and Metschnikowia pulcherrima (Mp)— and Daniel A. Dycus3* as antimicrobial agents to a standard addition of SO2 on Cabernet Sauvignon. Cite this article: Chacon-Rodriguez L, Joseph CML, California. In conjunction with this comparison study, a proof of concept pro- Nazaris B, Coulon J, Richardson S totypeThis fruit illustrates possesses the over use 10 of times a novel the spray normal method microbial for the flora application typically foundof these in and Dycus DA. 2020. Innovative non-Saccharomyces yeasts onto a grape machine harvester for bioprotection. use of non-Saccharomyces in bio- protection: T. delbrueckii and M. Key Findings: pulcherrima applied to a machine harvester. Catalyst 4:82-90. Research Winery: • Overall, the blended yeasts performed better than a standard addition of SO2 at controlling wine spoilage organisms on compromised fruit. • Organisms related to wine spoilage responded differently to Td/Mp than to SO2. The Td/Mp treatment exhibited an advantage over the SO2 treatment. The Td/Mp treatment appeared to work best against Zygosaccharomyces, Lactobacillus kunkeei, Hanseniaspora uvarum, and acetic acid bacteria. It was less effective against Pediococcus and other Lactobacillus species. 1Department of Viticulture and Enology, University of California, • Different stages of the trial fermentations were affected differently by Td/Mp 595 Hilgard Lane, Davis, CA 95616; and SO2. The Td/Mp populations performed best during prefermentation and 2 BioLaffort, 11 rue Aristide Bergès, the early stages of fermentation. 33270 Floirac, France; and 3Laffort USA, 1460 Cader Lane, Suite C, • Td/Mp showed an antagonistic effect on microorganisms responsible for wine Petaluma, CA 94954. spoilage. There were fewer microorganisms related to spoilage growing in *Corresponding author the three bioreactors with non-Saccharomyces species than in the bioreactors ([email protected]) acting as experimental controls with 60 mg/L SO2 added during processing. Acknowledgments: The authors • Td/Mp treatment increased the implantation capacity of S. cerevisiae acknowledge the contributions of Lorna Kreutz, Director of compared to the use of SO2. Using identical inoculation rates of S. cerevisiae, Winemaking, Foley Estates Vineyard we found more S. cerevisiae cells growing in the Td/Mp bioreactors than in the and Winery; ETS Laboratories; and bioreactors treated with SO2. Furthermore, we observed greater population Ferminkasi Inc. reduction and fewer cells/mL of S. cerevisiae at the end of fermentation. Manuscript submitted March 2020, revised May 2020, accepted Field Trial: June 2020 • A reduction in spoilage microorganisms occurred when using Td/Mp directly This is an open access article applied to the harvester. distributed under the CC BY license • Applying Td/Mp yeasts to the grape harvester reduced aromas related to vola- https://creativecommons.org/ licenses/by-nc/4.0/). tile acidity coming from the machine. By downloading and/or receiving this Impact and Significance: The use of Td/Mp yeasts provides an alternative to article, you agree to the Disclaimer SO for controlling the growth of organisms related to wine spoilage. Incorpo- of Warranties and Liability. The 2 full statement of the Disclaimers is rating these yeasts as a bioprotectant by applying them during the harvest and available at https://www.asevcatalyst. transport processes reduces the risk of detrimental microbial organisms in the org/content/proprietary-rights-notice- harvested fruit, juice, and wine. catalyst. If you do not agree to the Disclaimers, do not download and/or accept this article. Key words: Metschnikowia pulcherrima, microbial populations, Torulaspora doi: 10.5344/catalyst.2020.20003 delbrueckii, vineyard management, yeast ecology discovery into practice 4:2 (2020) page 82 A Publication of the American Society for Enology and Viticulture Innovative Use of Non-Saccharomyces in Bio-Protection – 83 Overview non-Saccharomyces species.10,11,12,13,14 Many of the mecha- nisms for increased mouthfeel result from an increase Winemakers continue to search for alternatives to SO2 in mannoprotein content from the cell.13 T. delbrueckii in winemaking. Many producers seek to reduce SO2 to take advantage of market opportunities in the “natural” is also known to metabolize sugar to produce alterna- - tive compounds such as glycerol or pyruvic acid via the 15 lines, to improve worker safety, and to utilize natural Crabtree effect. An additional study reveals an impact wine movement by following organic certification guide regarding the modulation of astringency resulting from 16 products for targeted applications. Winemakers current- T. delbrueckii fermentation. products known to have similar efficacy to synthetic The use of M. pulcherrima as a biological control agent ly use SO2 to control microbial growth. However, it is also a powerful antioxidant and inhibits browning reactions. is possible thanks to its ability to produce the natural antimicrobial compound pulcherrimin. This compound Because the properties of SO2 allow many different wine- 6 making applications,1 reducing or completely removing is an insoluble red pigment with antifungal activity. Pul- cherrimin has been shown to deplete iron in growth me- SO2 from winemaking requires an investigation of each processing step, beginning with grape harvesting and dia, which in a fermentation could result in inhibition of 17 transport. organisms requiring iron for growth. This mechanism Bioprotection is a relatively new term and emerging of iron depletion occurs via the precipitation of iron(III) concept in several food industries.2,3,4 In this study, the ions caused by an interaction with pulcherriminic acid, 6 term refers to a natural agent that controls the growth of a precursor of pulcherrimin secreted by M. pulcherrima. unwanted organisms through ecological processes such Several microorganisms exhibit inhibitory effects from pulcherrimin, including Candida tropicalis, Candida albi- blend of Torulaspora delbrueckii and Metschnikowia pul- cans, Brettanomyces/Dekkera, Hanseniaspora, Pichia, and cherrimaas competition. (Td/Mp This, 1:1 ratiostudy by examines cell count) the as efficacy a bioprotec of a- Botrytis cinerea. S. cerevisiae appears unaffected by this tion agent. This mixed culture is a commercial product antimicrobial activity.3 In addition, some strains of M. currently used by winemakers. The nature and impact pulcherrima produce a killer factor to suppress growth of these yeast species on winemaking is a current area of of killer-sensitive organisms. M. pulcherrima is also de- research at universities and developmental laboratories scribed as a biofungicide capable of reducing B. cinerea worldwide.2,5,6 on postharvest fruits via nutrient competition.18 This study investigates T. delbrueckii as a co-inoculum Uninoculated non-S. cerevisiae yeasts, often called for the bioprotection of grapes and juices. Some data sug- “wild” yeasts, are commonly associated with the pro- gest that the effectiveness of T. delbrueckii as a bioprotec- duction of ethyl acetate and negative sensory charac- tant depends on the matrix.21 Another study illustrates teristics.14 However, mixed cultures of T. delbrueckii that T. delbrueckii populations show much less severe and other yeasts are known to produce positive aromas losses in viability during the early stages of fermentation without the negatively associated sensory attributes.14 than other non-Saccharomyces species, making it an ideal M. pulcherrima is known to produce high concentrations choice as a competitive species for inoculation during of esters19,20,21,22,23 and - prefermentation.7,8 tivity, which catalyzes the release of varietal aromas.5 also possesses β-glucosidase ac In addition to its use for bioprotection, T. delbrueckii An additional study illustrates that co-inoculations of M. is known to enhance the aromatics of wine produced in pulcherrima with S. cerevisiae reduce the total amount of a cofermentation with Saccharomyces cerevisiae and is 4 Wines inoculated initially widely used in industry for this purpose.9 Evidence from with S. cerevisiae and M. pulcherrima show contributions the University of Bordeaux found that co-inoculation acetic acid in the final wine. - with T. delbrueckii and S. cerevisiae produced 54% less uct.12 volatile acidity and 60% less acetaldehyde than inocula- of 2-phenylethanolIn this study, we validatedand several the esters bioprotective in the final nature prod of tion with S. cerevisiae alone.10 Other studies show a posi- the mixed cultures at the University of California Davis tive sensory impact of cofermentation in both sequential Research Winery. The commercially available bioprotec- and simultaneous mixed cultures of T. delbrueckii and tion product is compared to a standard addition of SO2 on S. cerevisiae, most notably an increase in fruity aroma fruit possessing a high number of microbial organisms - related to wine spoilage. leasing volatile
Recommended publications
  • Saccharomyces Eubayanus, the Missing Link to Lager Beer Yeasts
    MICROBE PROFILE Sampaio, Microbiology 2018;164:1069–1071 DOI 10.1099/mic.0.000677 Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts Jose Paulo Sampaio* Graphical abstract Ecology and phylogeny of Saccharomyces eubayanus. (a) The ecological niche of S. eubayanus in the Southern Hemisphere – Nothofagus spp. (southern beech) and sugar-rich fructifications (stromata) of its fungal biotrophic parasite Cyttaria spp., that can attain the size of golf balls. (b) Schematic representation of the phylogenetic position of S. eubayanus within the genus Saccharomyces based on whole-genome sequences. Occurrence in natural environments (wild) or participation in different human-driven fermentations is highlighted, together with the thermotolerant or cold-tolerant nature of each species and the origins of S. pastorianus, the lager beer hybrid. Abstract Saccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market.
    [Show full text]
  • Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations
    Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations Sofia Dashko1, 2, Ping Liu3, Helena Volk2, Lorena Butinar2, Jure Piškur1, 2, Justin C. Fay3* 1Biology, Lund University, Sweden, 2Wine Research Center, University of Nova Gorica, Slovenia, 3Genetics, Washington University, USA Submitted to Journal: Frontiers in Microbiology Specialty Section: Food Microbiology ISSN: 1664-302X Article type: Original Research Article Received on: 10 Dec 2015 Accepted on: 09 Feb 2016 Provisional PDF published on: 09 Feb 2016 Frontiers website link: www.frontiersin.org ProvisionalCitation: Dashko S, Liu P, Volk H, Butinar L, Piškur J and Fay JC(2016) Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations. Front. Microbiol. 7:215. doi:10.3389/fmicb.2016.00215 Copyright statement: © 2016 Dashko, Liu, Volk, Butinar, Piškur and Fay. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon. Frontiers in Microbiology | www.frontiersin.org Provisional Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations Sofia Dashko1,2, Ping Liu3, Helena Volk1, Lorena Butinar1, Jure Piškur1,2 and Justin C.
    [Show full text]
  • Saccharomyces Uvarum Yeast Isolate Consumes Acetic Acid During Fermentation of High Sugar Juice and Juice with High Starting Volatile Acidity
    Received: 11 October 2019 y Accepted: 28 March 2020 y Published: 16 Avril 2020 DOI:10.20870/oeno-one.2020.54.2.2594 VINE AND WINE OPEN ACCESS JOURNAL Saccharomyces uvarum yeast isolate consumes acetic acid during fermentation of high sugar juice and juice with high starting volatile acidity Jennifer M. Kelly 1, Stephanie A. van Dyk 3, Lisa K. Dowling 2, Gary J. Pickering 2,3 , Belinda Kemp 2,3 and Debra L. Inglis 1,2,3 * 1Centre for Biotechnology, Brock University, St. Catharines, ON L2S3A1, Canada 2Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, ON L2S3A1, Canada 3Department of Biological Sciences, Brock University, St. Catharines, ON L2S3A1, Canada *Corresponding author: [email protected] ABSTRACT Aim: A Saccharomyces uvarum isolate was assessed for its ability to metabolize acetic acid present in juice and during the fermentation of partially dehydrated grapes. The impact on other yeast metabolites was also compared using an S. uvarum isolate and an S. cerevisiae wine yeast. The upper limit of fruit concentration that allowed the S. uvarum isolate to ferment wines to < 5 g/L residual sugar was defined. Methods and results: Cabernet franc grapes were partially dehydrated to three different post-harvest sugar targets (24.5 °Brix, 26.0 °Brix, and 27.5 °Brix) along with non-dehydrated grapes (21.5 °Brix control). Musts from all treatments were vinified with either the S. uvarum isolate CN1, formerly identified as S. bayanus , or S. cerevisiae EC1118. All wines were successfully vinified to less than 5 g/L residual sugar. Fermentation kinetics between the two yeasts were similar for all wines other than 27.5 °Brix, where CN1 took three days longer.
    [Show full text]
  • Characterization of a Lactobacillus Brevis Strain with Potential Oral Probiotic Properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3
    Fang et al. BMC Microbiology (2018) 18:221 https://doi.org/10.1186/s12866-018-1369-3 RESEARCHARTICLE Open Access Characterization of a Lactobacillus brevis strain with potential oral probiotic properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3 Abstract Background: The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health. Results: An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co- incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system. Conclusions: L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products. Keywords: Lactobacillus brevis, Antimicrobial activity, Hydrogen peroxide, Adhesion, Immunomodulation Background properties may prevent the colonization of oral patho- Oral infectious diseases, such as dental caries and peri- gens through different mechanisms.
    [Show full text]
  • An Indigenous Saccharomyces Uvarum Population with High Genetic Diversity Dominates
    bioRxiv preprint doi: https://doi.org/10.1101/838268; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 An indigenous Saccharomyces uvarum population with high genetic diversity dominates 2 uninoculated Chardonnay fermentations at a Canadian winery 3 4 Garrett C. McCarthy1¶, Sydney C. Morgan1¶*, Jonathan T. Martiniuk2, Brianne L. 5 Newman1, Vivien Measday2, Daniel M. Durall1 6 7 1Irving K. Barber School of Arts and Sciences, Department of Biology, The University of 8 British Columbia, Kelowna, British Columbia, Canada 9 2Wine Research Centre, Faculty of Land and Food Systems, The University of British 10 Columbia, Vancouver, British Columbia, Canada 11 12 ¶ These authors contributed equally to this work 13 14 * Corresponding author 15 Email: [email protected] (SCM) 16 17 Short title: Genetic diversity of Saccharomyces uvarum 18 19 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/838268; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 Saccharomyces cerevisiae is the primary yeast species responsible for most 26 fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, 27 have occasionally been found conducting commercial fermentations around the world.
    [Show full text]
  • Molecular Identification of Lactobacillus Hilgardii and Genetic Relatedness with Lactobacillus Brevis
    International Journal of Systematic Bacteriology (1 999). 49, 1075-1 081 Printed in Great Britain Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis Daniele Sohier, Joana Coulon and Aline Lonvaud-Funel Author for correspondence: Aline Lonvaud-Funel. Tel: +33 5 56 84 64 66. Fax: +33 5 56 84 64 68. e-mail : aline. lonvaud @ oenologie. u- bordeaux2.fr FacultC d'CEnologie-Unite Conventional phenotypic methods lead to misidentification of the lactic acid associCe INRA-U n iversite bacteria Lactobacillushilgardii and Lactobacillusbrevis. Random amplified Victor Segalen-Bordeaux 11, 351 Cows de la LibCration, polymorphic DNA (RAPD) and repetitive element PCR (REP-PCR) techniques 33405 Talence CCdex, were developed for a molecular study of these two species. The taxonomic France relationships were confirmed by analysis of the ribosomal operon. Amplified DNA fragments were chosen to isolate L. hilgardii-specific probes. In addition to rapid molecular methods for identification of L. hilgardii, these results convincingly proved that some strains first identified as L. brevis must be reclassified as L. hilgardii. The data clearly showed that these molecular methods are more efficient than phenotypic or biochemicalstudies for bacterial identification at the species level. I Keywords : Lactobacillus hilgardii, Lactobacillus brevis, RAPD, REP-PCR INTRODUCTION phenotypically close (Kandler & Weiss, 1986), they differ by their ability to ferment arabinose: L. brevis Lactic acid bacteria are responsible for malolactic can use this carbohydrate while L. hilgardii cannot. fermentation, an important step in winemaking et al., et al., In the present study, we intended to discriminate L. (Lafon-Lafourcade 1983; Renault 1988). hilgardii L. brevis However, some of them induce spoilage (Lonvaud- and by using molecular methods Funel & Joyeux, 1982; Lonvaud-Funel et al., 1990).
    [Show full text]
  • Unique Volatile Chemical Profiles Produced by Indigenous And
    Received: 2 December 2020 y Accepted: 1st July 2021 y Published: 27 July 2021 DOI:10.20870/oeno-one.2021.55.3.4551 Unique volatile chemical profiles produced by indigenous and commercial strains of Saccharomyces uvarum and Saccharomyces cerevisiae during laboratory-scale Chardonnay fermentations. Sarah M. Lyons1, Sydney C. Morgan1,5, Stephanie McCann1, Samantha Sanderson1, Brianne L. Newman1, Tommaso Liccioli Watson2, Vladimir Jiranek2,3, Daniel M. Durall1 and Wesley F. Zandberg4*. 1 University of British Columbia Okanagan, Biology Department, 1177 Research Rd, Kelowna BC V1V 1V7, Canada 2 The University of Adelaide, Department of Wine Science, Urrbrae, Adelaide SA 5005, Australia 3 The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia 4 University of British Columbia Okanagan, Chemistry Department, 1177 Research Rd, Kelowna BC V1V 1V7, Canada 5 Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, USA, 92037 *corresponding author: [email protected] Associate editor: Hervé Alexandre ABSTRACT Each wine growing region hosts unique communities of indigenous yeast species, which may enter fermentation and contribute to the final flavour profile of wines. One of these species,Saccharomyces uvarum, is typically described as a cryotolerant yeast that produces relatively high levels of glycerol and rose-scented volatile compounds as compared with Saccharomyces cerevisiae, the main yeast in winemaking. Comparisons of fermentative and chemical properties between S. uvarum and S. cerevisiae at the species level are relatively common; however, a paucity of information has been collected on the potential variability present among S.
    [Show full text]
  • Characterization of Lactobacillus Brevis with Potential Probiotic Properties and Biofilm Inhibition Against Pseudomonas Aeruginosa †
    Proceedings Characterization of Lactobacillus brevis with Potential Probiotic Properties and Biofilm Inhibition against Pseudomonas aeruginosa † Vaishali Singh, Suman Ganger and Shweta Patil * Department of Microbiology, Vivekanand Education Society’s College of Arts, Science and Commerce, Mumbai 400071, Maharashtra, India; [email protected] (V.S.); [email protected] (S.G.) * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Microbiology, 2–30 November 2020; Available online: https://ecm2020.sciforum.net/. Published: 31 December 2020 Abstract: (1) Background: Probiotics are a live microbial supplement that improve hosts’ health by maintaining intestinal microbiota. The evidence suggests that probiotics can be used as a therapeutic strategy to improve overall digestive health. Lactic acid bacteria strains have been extensively used as probiotics. (2) Method: To isolate lactic acid bacteria with probiotic potential from food samples. Probiotic properties such as tolerance to low pH, bile, sodium chloride, lysozyme, antibiotic susceptibility, cell surface hydrophobicity, and antimicrobial activity were determined. (3) Results: Ten different isolates were examined to study their probiotic potential. In this study, Lactobacillus brevis was isolated and showed most of the probiotic properties, such as10% sodium chloride tolerance, 1% bile tolerance, growth in pH 2, and antimicrobial activity against E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Formation of biofilm by Klebsiella pneumoniae and Pseudomonas aeruginosa was also inhibited by cell free extracts of L. brevis, which reveals its therapeutic relevance. In addition, it was found to be stable at low temperature (4°C). (4) Conclusion: The above-mentioned results of L. brevis suggest that it has promising potential to be considered “probiotic”.
    [Show full text]
  • Hybrids Saccharomyces Cerevisiae X Saccharomyces Bayanus Var
    HYBRIDS SACCHAROMYCES CEREVISIAE X SACCHAROMYCES BAYANUS VAR. UVARUM HAVING A HIGH LIBERATING ABILITY OF SOME SULFUR VARIETAL AROMAS OF VITIS VINIFERA SAUVIGNON BLANC WINES DES HYBRIDES SACCHAROMYCES CEREVISIAE X SACCHAROMYCES BAYANUS VAR. UVARUM PRÉSENTANT UNE FORTE APTITUDE À RÉVÈLER DES COMPOSÉS SOUFRÉS CARACTÉRISTIQUES DE L’ARÔME VARIÉTAL DES VINS BLANCS DE SAUVIGNON Isabelle MASNEUF1, Marie-Laure MURAT2, G.I. NAUMOV3, T. TOMINAGA2 and D. DUBOURDIEU2 1 : ENITA de Bordeaux, 1 cours du Général de Gaulle, BP 201, 33175 Gradignan cedex, France 2 : Faculté d'Œnologie, Université Victor Segalen Bordeaux 2, 351 cours de la Libération, 33400 Talence, France. 3 : State Institute for Genetics and Selection of Industrial Microorganisms, I-Dorozhnyi 1, Moscow 113545, Russia Summary : We measured ability of some indigenousSaccharomyces bayanus var. uvarum wine yeasts to release volatile thiols from their S-cysteine conjugate precursors, odorous compounds responsible for the characteristic aroma of Sauvignon blanc wines. We also made interspecific hybrids between Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum strains and verified their hybrid origin with karyotypes and MET2 PCR-RFLP analysis. As compared to the parents, some hybrids could release high amounts of volatile thiols from the S-cysteine conjugate precursor without producing excessive amounts of β-phenylethyl alcohol and its acetate. One hybrid was retained for industrial production under a dry form and successfully compared with Saccharomyces cerevisiae strains in experimental tests in different cellars. Résumé : L’aptitude de certaines souches de l’espèce Saccharomyces bayanus var. uvarum à libérer, au cours de la fermentation alcoolique, les thiols volatils de leurs précurseurs cystéinylés est étudiée dans ce travail.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Diversity of Lactic Acid Bacteria on Organic Flours and Application of Isolates in Sourdough Fermentation
    D. Stanzer et al: Croatian Journal of Food Technology, Biotechnology 44 and Nutrition 12 (1-2), 44-51 (2017) ORIGINAL SCIENTIFIC PAPER Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation Damir Stanzer1, Ines Ivanuša1, Snježana Kazazić2, Karla Hanousek Čiča1, Jasna Mrvčić1* 1 Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10 000 Zagreb, Croatia 2 Laboratory for chemical kinetics and atmospheric chemistry, „Ruder Boškovic“ Institute, Bijenicka 54, 10 000 Zagreb, Croatia * Corresponding author: [email protected] Abstract Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in orga- nically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determined by high performance liquid chromatography, while the antifungal activity was determined using an overlay agar method. Wheat flours showed less microbial biodiversity than the rye and spelt flours. The most common genera in the tested flour were Lactobacillus, Pediococcus and Enterococcus. Isolated Lactobacillus farciminis, Pediococcus pentosaceus, Leuconostoc citreum and Lactobacillus brevis showed the best acidification activity. Lactobacillus brevis, Pediococcus pentosa- ceus, Weissella cibaria and Lactobacillus farciminis showed significant antifungal activity against A. niger 357 and Penicillium sp. 505. The prefermented medium of Lactobacillus farciminis were characterized by high content of lactic and phenyllactic acid. Keywords: organic cereals, species diversity, Lactobacillus, sourdough, spelt Introduction mented dairy, vegetables or meat products as well as in bread production.
    [Show full text]
  • Assessment of Antibiotic Resistance in Starter and Non-Starter Lactobacilli of Food Origin
    ACTA VET. BRNO 2020, 89: 401–411; https://doi.org/10.2754/avb202089040401 Assessment of antibiotic resistance in starter and non-starter lactobacilli of food origin Marta Dušková1,2, Monika Morávková1, Jakub Mrázek3, Martina Florianová1, Lenka Vorlová2, Renáta Karpíšková1,2 1Veterinary Research Institute, Brno, Czech Republic 2University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Origin Food and Gastronomic Sciences, Brno, Czech Republic 3Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Prague, Czech Republic Received June 1, 2020 Accepted December 21, 2020 Abstract The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L.
    [Show full text]