1-14 Nuevos Registros De Hongos Corticioides Asociados a Abies

Total Page:16

File Type:pdf, Size:1020Kb

1-14 Nuevos Registros De Hongos Corticioides Asociados a Abies Revista Mexicana de Biodiversidad 89 (2018): 1-14 Taxonomía y sistemática Nuevos registros de hongos corticioides asociados a Abies religiosa del Estado de México New reports of corticioid fungi from Abies religiosa forests in the State of Mexico María Magdalena Contreras-Pacheco a, Andrés Argüelles-Moyao b y Roberto Garibay-Orijel b, * a Laboratorio de Micología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, Col. Santo Tomás, 11340 Ciudad de México, México. b Laboratorio de Sistemática y Ecología de Micorrizas, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer circuito s/n, Ciudad Universitaria, Delegación Coyoacán, 04510 Ciudad de México, México. *Autor para correspondencia: [email protected] (R. Garibay-Orijel) Recibido: 10 febrero 2016; aceptado: 19 septiembre 2017 Resumen Los corticioides son un grupo polifilético de hongos con basidiocarpos resupinados a efuso-reflejados y con una gran importancia ecológica pues la mayoría de las especies descomponen los substratos vegetales donde crecen o bien son simbiontes ectomicorrízicos. En este trabajo se presentan los resultados del estudio de los hongos corticioides en el bosque de Abies religiosa del Zarco, Estado de México, México. Los ejemplares se recolectaron durante las épocas de lluvias del 2011 al 2013, tomando los basidiomas de hábito resupinado que crecían en ramas, troncos, rocas y suelo. Se describen 17 especies, de las cuales 6 son nuevos registros para México: Erythricium hypnophilum, Ginnsia viticola, Peniophora versicolor, Resinicium furfuraceum, Scotomyces subviolaceus y Rhizoctonia fusispora. Siete especies son nuevos registros para el Estado de México: Amphinema byssoides, Asterostroma cervicolor, Athelia decipiens, Coniophora arida, Eonema pyriforme, Hyphodontia arguta y Phlebia lacteola. Este es el primer trabajo sobre hongos corticioides asociados a A. religiosa. Palabras clave: Abies religiosa; Hongos resupinados; Diversidad; Nuevos registros; Oyamel Abstract Corticioids are a polyphyletic group of fungi with resupinate to effused basidiocarps and high ecological importance because the majority of their species are wood decomposers or ectomycorrhizal symbionts. In this work, we present the results of the survey for corticioid fungi in the Abies religiosa forests of “el Zarco”, Estado de México, Mexico. During the rainy seasons from 2011 to 2013 we collected all sporomes with resupinate habit growing on branches, trunks, rocks, and soil surface. We describe 17 species of which 6 are new registers for Mexico: Erythricium hypnophilum, Ginnsia viticola, Peniophora versicolor, Resinicium furfuraceum, Scotomyces subviolaceus, and Rhizoctonia fusispora. Seven species are new registers for the Estado de Mexico State: Amphinema byssoides, Asterostroma cervicolor, Athelia decipiens, Coniophora arida, Eonema pyriforme, Hyphodontia arguta, and Phlebia lacteola. This is the first study dealing with corticioid fungi associated to A. religiosa. Keywords: Abies religiosa; Corticioid fungi; Diversity; New register; Sacred fir ISSN versión impresa: 1870-3453; versión electrónica: 2007-8706; Universidad Nacional Autónoma de México, Instituto de Biología. Open Access bajo la licencia CC BY-NC-ND (4.0) https://doi.org/10.22201/ib.20078706e.2018.1.1605 M. M. Contreras-Pacheco et al. / Revista Mexicana de Biodiversidad 89 (2018): 1-14 https://doi.org/10.22201/ib.20078706e.2018.1.1605 Introducción de la diversidad de los hongos corticioides de los bosques de Abies religiosa. Los hongos corticioides juegan un papel importante en los ecosistemas boscosos pues son degradadores de Material y métodos madera, ectomicorrízicos o parásitos de importancia forestal. Inicialmente fueron ubicados taxonómicamente El trabajo se llevó a cabo en el Zarco, San Pedro en la familia Corticiaceae (Donk, 1964); sin embargo, Atlapulco, Estado de México, en la sierra de las Cruces. actualmente son considerados como un grupo polifilético En el bosque del Zarco, A. religiosa es monodominante (Hjortstam, 1987; Jülich y Stalpers 1980; Larsson et aunque presenta algunos ejemplares de Alnus jorullensis al., 2004). Estos hongos se caracterizan por presentar Humboldt, Bonpland & Kunth y Salix paradoxa Kunth, un basidioma resupinado a efuso-reflejado, himenóforo (Argüelles-Moyao, 2013). Esta zona está situada entre las liso, dentado, merulioide, odontoide, o verrucoso; sistema ciudades de México y Toluca y colinda con los municipios hifal principalmente monomítico o algunas veces dimítico; de Lerma y Huixquilucan al norte, Lerma y San Mateo presencia de una amplia variedad de cistidios; y crecimiento Atenco al oeste, al este con la Ciudad de México y al sur con costroso durante todo su ciclo de vida. Se estima que a los municipios de Capulhuac de Mirafuentes, Xalatlaco y nivel mundial existen alrededor de 1,900 especies (Ginns, Santiago Tianguistenco. Al estar rodeado de zonas urbanas 1998; Mueller et al., 2007). En México los estudios sobre se encuentra sometido a diferentes disturbios como altos su diversidad y ecología citan alrededor de 270 especies, niveles de contaminación atmosférica, depósito de basura, siendo los bosques templados los ecosistemas con la turismo, entre otros. mayor riqueza (Contreras-Pacheco, 2008; Contreras et al., Durante las temporadas de lluvias del 2011 al 2013 se 2012, 2014; Urbizu et al., 2013, 2014; Tapia y Chacón, ubicaron los basidiomas de hábito corticioide que crecían 2015; Tapia et al., 2016). Los bosques de Abies en México sobre el suelo, sobre troncos y rocas en contacto con el ocupan 142,269 ha y se distribuyen principalmente en la suelo y sobre ramas caídas. Los ejemplares se recolectaron parte norte y centro del país, y hacia el sur en los estados siguiendo las técnicas propuestas por Cifuentes et al. de Oaxaca, Guerrero y Chiapas. Se ubican principalmente (1986). Los materiales se revisaron según Hjortstam en las barrancas, cañadas y partes bajas de laderas que (1987), haciendo cortes a mano libre con navaja de se encuentran entre los 3,000 y 3,500 m de altitud, con doble filo y con un estereomicroscopio Olympus SZ. Los tendencia a ocupar lugares con mayor fertilidad, húmedos cortes se rehidrataron primero con alcohol al 70% por 2 y protegidos, en donde forman poblaciones puras de gran minutos y posteriormente con hidróxido de potasio al 3 densidad y cobertura, excepto en sus límites de altitud o 5% de 2 a 5 minutos, dependiendo de la consistencia superior e inferior, donde con frecuencia el bosque es de cada ejemplar; cuando las estructuras microscópicas de menor densidad y se mezcla con algunas especies de fueron muy hialinas, se agregó el colorante floxina. Se Pinus (Semarnat, 2008). Los hongos de los bosques de A. realizaron observaciones con el reactivo de Melzer para religiosa han sido estudiados a profundidad (Argüelles- determinar la amiloidia. Se midieron y fotografiaron las Moyao, 2013; Arteaga y Moreno, 2006; Franco-Maass y estructuras fúngicas utilizando microscopía de contraste Burrola, 2010; Guzmán, 1972; Guzmán y Villareal, 1984; de interferencia diferencial con un microscopio Olympus Landeros et al., 2006; Medel et al., 2012; Montoya et al., BX51. Todas las medidas de basidiosporas (n = 30), 2005; Pérez-Moreno et al., 2010; Raymundo et al., 2015; basidios (n = 10), cistidios (n = 20) e hifas (n = 30) se Valenzuela et al., 2004; Villarruel y Cifuentes, 2007) y se ha realizaron en magnificación 1,000 × en KOH. Los colores demostrado que este ecosistema alberga una alta diversidad se estandarizaron con la guía de colores de Wanscher de macromicetos (Burrola et al., 2013). Sin embargo, todos y Kornerup (1991). Para la identificación taxonómica se los estudios se han enfocado en hongos pileado-estipitados utilizaron las claves de Jülich y Stalpers (1980), Hjortstam o poliporoides. Por lo tanto, el conocimiento sobre los et al. (1988a) principalmente, siguiendo la clasificación de hongos corticioides en este ecosistema es muy limitado, Kirk et al. (2008). Para la actualización de la nomenclatura habiéndose reportado solo 5 especies: Chondrostereum de las especies se consultó el Index Fungorum purpureum (Pers.) Pouzar, Heterochaete shearii (Burt) (2016). Burt, Resinicium bicolor (Alb. & Schwein.) Parmasto, Sebacina incrustans (Pers.) Tul. & C. Tul. y Stecchericium Resultados seriatum (Lloyd) Maas Geest., (Contreras-Pacheco et al., 2012, Sánchez-Ramírez, 1980; Valenzuela et al., 2004; En total, en el bosque de A. religiosa de El Zarco Villaruel y Cifuentes, 2007). Por lo tanto, el objetivo del encontramos 17 especies de hongos corticioides, de las presente trabajo es hacer una contribución al conocimiento cuales 6 especies son nuevos registros para México: M. M. Contreras-Pacheco et al. / Revista Mexicana de Biodiversidad 89 (2018): 1-14 https://doi.org/10.22201/ib.20078706e.2018.1.1605 Erythricium hypnophilum, Ginnsia viticola, Peniophora Agaricales, Hygrophoraceae versicolor, Resinicium furfuraceum, Rhizoctonia fusispora Eonema pyriforme (M.P. Christ.) Redhead, Lücking & y Scotomyces subviolaceus; y 7 son nuevos registros para Lawrey el Estado de México: Amphinema byssoides, Asterostroma Fig. 1a-d cervicolor, Athelia decipiens, Coniophora arida, Eonema Basidioma resupinado, laxo, hypochnoide, que se pyriforme, Hyphodontia arguta, Phlebia lacteola. separa fácilmente del sustrato; de color blanquecino (6A2), Resinicium bicolor ya ha sido reportado para el Estado de himenóforo irregular; borde del basidioma indeterminado; México. A continuación, se presenta la descripción de
Recommended publications
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Evolution of Complex Fruiting-Body Morphologies in Homobasidiomycetes
    Received 18April 2002 Accepted 26 June 2002 Publishedonline 12September 2002 Evolutionof complexfruiting-bo dymorpholog ies inhomobasidi omycetes David S.Hibbett * and Manfred Binder BiologyDepartment, Clark University, 950Main Street,Worcester, MA 01610,USA The fruiting bodiesof homobasidiomycetes include some of the most complex formsthat have evolved in thefungi, such as gilled mushrooms,bracket fungi andpuffballs (‘pileate-erect’) forms.Homobasidio- mycetesalso includerelatively simple crust-like‘ resupinate’forms, however, which accountfor ca. 13– 15% ofthedescribed species in thegroup. Resupinatehomobasidiomycetes have beeninterpreted either asa paraphyletic grade ofplesiomorphic formsor apolyphyletic assemblage ofreducedforms. The former view suggeststhat morphological evolutionin homobasidiomyceteshas beenmarked byindependentelab- oration in many clades,whereas the latter view suggeststhat parallel simplication has beena common modeof evolution.To infer patternsof morphological evolution in homobasidiomycetes,we constructed phylogenetic treesfrom adatasetof 481 speciesand performed ancestral statereconstruction (ASR) using parsimony andmaximum likelihood (ML)methods. ASR with both parsimony andML implies that the ancestorof the homobasidiomycetes was resupinate, and that therehave beenmultiple gains andlosses ofcomplex formsin thehomobasidiomycetes. We also usedML toaddresswhether there is anasymmetry in therate oftransformations betweensimple andcomplex forms.Models of morphological evolution inferredwith MLindicate that therate
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Sclerotium Rolfsii; Causative Organism of Southern Blight, Stem Rot, White Mold and Sclerotia Rot Disease
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Annals of Biological Research, 2015, 6 (11):78-89 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-1233 CODEN (USA): ABRNBW Sclerotium rolfsii; Causative organism of southern blight, stem rot, white mold and sclerotia rot disease 1Liamngee Kator, 1Zakki Yula Hosea and 2Onah Daniel Oche 1Department of Biological Sciences, Benue State University Makurdi, Nigeria 2Department of Medical Laboratory Science, School of Health Technology, Agasha, Benue State _____________________________________________________________________________________________ ABSTRACT Sclerotium rolfsii is a soil borne pathogen that causes stem rot disease on plants. It primarily attacks host stems including roots, fruits, petioles and leaves under favourable conditions. It commonly occurs in the tropics, subtropics and other warm temperate regions of the world. Common hosts are legumes, crucifers and cucurbits. On a global perspective, estimated losses of 10 – 20 million dollars associated with S. rolfsii have been recorded with yield depletion ranging from 1 – 60% in fields. Sclerotia serve as primary inoculum for the pathogen and are spread to uninfected areas by wind, water, animals and soil. Control measures include excluding the pathogen from the area, plant removal, soil removal, soil treatment, heat, solarization, chemical soil treatment, cultural practices, resistance and transgenic plant resistance, plant treatment, crop rotation, amongst others. Despite considerable research on this pathogen, its control continues to be a problem. Keywords: Sclerotium rolfsii, stem rot, white mold, stem blight. _____________________________________________________________________________________________ INTRODUCTION Sclerotium rolfsii is a destructive soil borne plant pathogen which causes Southern blight disease on a wide variety of plants. In 1928, the United States Department of Agriculture reported that S.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • BLS Bulletin 108 Summer 2011.Pdf
    BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2011 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: E.
    [Show full text]
  • Lives Within Lives: Hidden Fungal Biodiversity and the Importance of Conservation
    Fungal Ecology 35 (2018) 127e134 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Commentary Lives within lives: Hidden fungal biodiversity and the importance of conservation * ** Meredith Blackwell a, b, , Fernando E. Vega c, a Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA b Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA c Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA article info abstract Article history: Nothing is sterile. Insects, plants, and fungi, highly speciose groups of organisms, conceal a vast fungal Received 22 March 2018 biodiversity. An approximation of the total number of fungal species on Earth remains an elusive goal, Received in revised form but estimates should include fungal species hidden in associations with other organisms. Some specific 28 May 2018 roles have been discovered for the fungi hidden within other life forms, including contributions to Accepted 30 May 2018 nutrition, detoxification of foodstuffs, and production of volatile organic compounds. Fungi rely on as- Available online 9 July 2018 sociates for dispersal to fresh habitats and, under some conditions, provide them with competitive ad- Corresponding Editor: Prof. Lynne Boddy vantages. New methods are available to discover microscopic fungi that previously have been overlooked. In fungal conservation efforts, it is essential not only to discover hidden fungi but also to Keywords: determine if they are rare or actually endangered. Conservation Published by Elsevier Ltd. Endophytes Insect fungi Mycobiome Mycoparasites Secondary metabolites Symbiosis 1. Introduction many fungi rely on insects for dispersal (Buchner, 1953, 1965; Vega and Dowd, 2005; Urubschurov and Janczyk, 2011; Douglas, 2015).
    [Show full text]
  • Molecular Phylogeny, Morphology, Pigment Chemistry and Ecology in Hygrophoraceae (Agaricales)
    Fungal Diversity DOI 10.1007/s13225-013-0259-0 Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales) D. Jean Lodge & Mahajabeen Padamsee & P. Brandon Matheny & M. Catherine Aime & Sharon A. Cantrell & David Boertmann & Alexander Kovalenko & Alfredo Vizzini & Bryn T. M. Dentinger & Paul M. Kirk & A. Martyn Ainsworth & Jean-Marc Moncalvo & Rytas Vilgalys & Ellen Larsson & Robert Lücking & Gareth W. Griffith & Matthew E. Smith & Lorelei L. Norvell & Dennis E. Desjardin & Scott A. Redhead & Clark L. Ovrebo & Edgar B. Lickey & Enrico Ercole & Karen W. Hughes & Régis Courtecuisse & Anthony Young & Manfred Binder & Andrew M. Minnis & Daniel L. Lindner & Beatriz Ortiz-Santana & John Haight & Thomas Læssøe & Timothy J. Baroni & József Geml & Tsutomu Hattori Received: 17 April 2013 /Accepted: 17 July 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Molecular phylogenies using 1–4 gene regions and here in the Hygrophoraceae based on these and previous anal- information on ecology, morphology and pigment chemistry yses are: Acantholichen, Ampulloclitocybe, Arrhenia, were used in a partial revision of the agaric family Hygro- Cantharellula, Cantharocybe, Chromosera, Chrysomphalina, phoraceae. The phylogenetically supported genera we recognize Cora, Corella, Cuphophyllus, Cyphellostereum, Dictyonema, The Forest Products Laboratory in Madison, WI is maintained in cooperation with the University of Wisconsin and the laboratory in Puerto Rico is maintained in cooperation with the USDA Forest Service, International Institute of Tropical Forestry. This article was written and prepared by US government employees on official time and is therefore in the public domain and not subject to copyright. Electronic supplementary material The online version of this article (doi:10.1007/s13225-013-0259-0) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Cyphellostereum Ushima Sp. Nov. (Hygrophoraceae, Agaricales
    Cyphellostereum Ushima Sp. Nov. (Hygrophoraceae, Agaricales) Described from Amami-Oshima Island (Kagoshima Prefecture, Ryukyu Islands), Japan, with Ultrastructural Observations of its Rhizonema Photobiont Filaments Penetrated Longitudinally by a Central Haustorium Hiroshi Masumoto ( [email protected] ) Kyoto University: Kyoto Daigaku https://orcid.org/0000-0003-1796-364X Yousuke Degawa University of Tsukuba: Tsukuba Daigaku Research Article Keywords: Athelia, Culture, Haustorium, Lichenized basidiomycetes, Rhizonema, TEM Posted Date: August 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-650929/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract We collected a resupinate fungus lichenized with lamentous Rhizonema cyanobacteria in Amami-Oshima Island, Japan. Microscopic observations and molecular phylogenetic analyses of both the basidioma and the lichenized thallus indicated anities within Cyphellostereum, the rst record of this basidiomycete genus from Japan. Its unique combination of structural characters and ITS rDNA sequences suggest a new species, described here as C. ushima. Light and transmission electron microscopic observations revealed tubular intracellular haustoria penetrating longitudinally within the cyanobacterial cells, a feature typically seen in the related genus Dictyonema, but unusual in Cyphellostereum. The generic circumscription of Cyphellostereum was therefore emended to include features of C. ushima and other recently described species that deviate from the conventional denition of the genus. Ultrastructural details of symbiont interactions are provided for the rst time in this genus. We also succeeded in cultivating the fungus from hyphae regenerated from thallus fragments, and include a brief description of those results. TreeBASE reviewer access URL: http://purl.org/phylo/treebase/phylows/study/TB2:S28437?x-access-code=84d2007afb05bd743f34101ac2d97dac&format=html Introduction The genus Cyphellostereum D.A.
    [Show full text]
  • Early Diverging Clades of Agaricomycetidae Dominated by Corticioid Forms
    Mycologia, 102(4), 2010, pp. 865–880. DOI: 10.3852/09-288 # 2010 by The Mycological Society of America, Lawrence, KS 66044-8897 Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms Manfred Binder1 sister group of the remainder of the Agaricomyceti- Clark University, Biology Department, Lasry Center for dae, suggesting that the greatest radiation of pileate- Biosciences, 15 Maywood Street, Worcester, stipitate mushrooms resulted from the elaboration of Massachusetts 01601 resupinate ancestors. Karl-Henrik Larsson Key words: morphological evolution, multigene Go¨teborg University, Department of Plant and datasets, rpb1 and rpb2 primers Environmental Sciences, Box 461, SE 405 30, Go¨teborg, Sweden INTRODUCTION P. Brandon Matheny The Agaricomycetes includes approximately 21 000 University of Tennessee, Department of Ecology and Evolutionary Biology, 334 Hesler Biology Building, described species (Kirk et al. 2008) that are domi- Knoxville, Tennessee 37996 nated by taxa with complex fruiting bodies, including agarics, polypores, coral fungi and gasteromycetes. David S. Hibbett Intermixed with these forms are numerous lineages Clark University, Biology Department, Lasry Center for Biosciences, 15 Maywood Street, Worcester, of corticioid fungi, which have inconspicuous, resu- Massachusetts 01601 pinate fruiting bodies (Binder et al. 2005; Larsson et al. 2004, Larsson 2007). No fewer than 13 of the 17 currently recognized orders of Agaricomycetes con- Abstract: The Agaricomycetidae is one of the most tain corticioid forms, and three, the Atheliales, morphologically diverse clades of Basidiomycota that Corticiales, and Trechisporales, contain only corti- includes the well known Agaricales and Boletales, cioid forms (Hibbett 2007, Hibbett et al. 2007). which are dominated by pileate-stipitate forms, and Larsson (2007) presented a preliminary classification the more obscure Atheliales, which is a relatively small in which corticioid forms are distributed across 41 group of resupinate taxa.
    [Show full text]
  • Phylogenetic Placement of Paratrichaptum and Reconsideration of Gloeophyllales
    VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 119–129 doi.org/10.3114/fuse.2020.05.07 Phylogenetic placement of Paratrichaptum and reconsideration of Gloeophyllales C.-C. Chen1, B. Cao2, T. Hattori3, B.-K. Cui4, C.-Y. Chen1, S.-H. Wu1,5* 1Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan 2State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 3Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan 4Institute of Microbiology, Beijing Forestry University, Beijing 100083, China 5Department of Biology, National Museum of Natural Science, Taichung 40453, Taiwan *Corresponding author: [email protected] Key words: Abstract: Paratrichaptum accuratum is a large conspicuous polypore fungus growing on dead or living brown rot angiosperm trees in subtropical-boreal areas of China, Indonesia, Japan, and Taiwan. The present study places eastern and southeastern Asia P. accuratum in the family Gloeophyllaceae that belongs to the order Gloeophyllales within Agaricomycetes systematics (Basidiomycota), based on evidence derived from morphological and ecological characteristics, and taxonomy phylogenetic analyses of sequences of nuclear rDNA regions (5.8S, nuc 18S, nuc 28S) and protein-coding wood-inhabiting fungi genes (rpb1, rpb2, and tef1). The analyses presented in this study also give strong support for including Jaapia new taxa in Gloeophyllaceae and Gloeophyllales. Thus, the names Jaapiaceae and Jaapiales are considered here as synonyms of Gloeophyllaceae and Gloeophyllales. Since Paratrichaptum represents the earliest diverging lineage in Gloeophyllales, pileate basidiocarps and brown rot appear to be ancestral states of Gloeophyllales. Paratrichaptum accuratum may represent a relic species, according to its phylogenetic position, peculiar distribution pattern and rare occurrence.
    [Show full text]
  • Epidemiology of the Fungus Athelia Arachnoidea in Epiphytic Communities of Broadleaved Forests Under Strong Anthropogenic Impact
    EKOLOGIJA. 2005. Nr. 4. P. 28–34 ©28 Lietuvos mokslø akademija, 2005 Jurga Motiejûnaitë, Nomeda Jucevièienë © Lietuvos mokslø akademijos leidykla, 2005 Epidemiology of the fungus Athelia arachnoidea in epiphytic communities of broadleaved forests under strong anthropogenic impact Jurga Motiejûnaitë The effect of the basidiomycete Athelia arachnoidea on epiphytic commu- nities was studied in broadleaved forests within the zone of influence of Institute of Botany, a phosphorus fertiliser factory in central Lithuania. Lichen communities Laboratory of Mycology, in 23 permanent quadrats were observed for five years. During this pe- Þaliøjø eþerø 49, LT-08406 Vilnius 21, riod, the fungus was observed in 10 quadrats and caused significant da- Lithuania mage in part of them. A. arachnoidea influenced both species number and cover in the quadrats, although its effect on various species differed Nomeda Jucevièienë both by the type of fungus infection and the individual reaction of the lichen species. Phlyctis argena and Lecidella elaeochroma showed compa- Department of Environmental Sciences, rative tolerance to the infection, being able to regenerate and re-establish Vytautas Magnus University, rapidly; Melanelia fuliginosa was more susceptible, but probably capable Vileikos 8, LT-44404 Kaunas 35, of rapid re-establishment; the fast-growing, sterile, sorediate Biatora spe- Lithuania cies profited by the infection, rapidly occupying newly-created gaps. Key words: epiphytic lichens, lichen communities, air pollution, lichenico- lous fungi, basidiomycota, Athelia arachnoidea, Lithuania INTRODUCTION rich, 1986; Parmasto, 1998; Yurchenko, Golubkov, 2003). But only Gilbert (1988) studied its effect on Little attention is paid to the influence of biotic fac- lichen communities, investigating simplified epiphytic tors when investigating the development of lichen swards of Lecanora conizaeoides-Desmococcus.
    [Show full text]