Hurricane Sandy After Action Report and Recommendations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Port Recovery in the Aftermath of Hurricane Sandy VOICES Improving Port Resiliency in the Era of Climate Change from the FIELD
AUGUST 2014 Port Recovery in the Aftermath of Hurricane Sandy VOICES Improving Port Resiliency in the Era of Climate Change FROM THE FIELD By Commander Linda A. Sturgis, USCG; Dr. Tiffany C. Smythe and Captain Andrew E. Tucci, USCG Acknowledgements The authors would like to acknowledge and thank the New York and New Jersey Port community, first responders and dedicated volun- teers who selflessly helped so many people and saved numerous lives in the aftermath of Hurricane Sandy. Dr. Smythe’s research on Hurricane Sandy was supported in part through the University of Colorado Natural Hazards Center’s Quick Response Grant Program, funded by National Science Foundation grant CMMI 1030670. The views expressed in this report are those of the authors and do not represent the official policy or position of the Department of Defense, Department of Homeland Security or the U.S. government. Cover Image The U.S. Coast Guard fuel pier and shore side facilities in Bayonne, New Jersey were severely damaged from Hurricane Sandy’s storm surge. (U.S. COAST GUARD) AUGUST 2014 Port Recovery in the Aftermath of Hurricane Sandy Improving Port Resiliency in the Era of Climate Change By Commander Linda A. Sturgis, USCG; Dr. Tiffany C. Smythe and Captain Andrew E. Tucci, USCG About the Authors Commander Linda A. Sturgis is a Senior Military Fellow at Captain Andrew E. Tucci is the Chief of the Office the Center for a New American Security. She led the Hurricane of Port and Facility Compliance at Coast Guard Sandy port recovery effort during her assignment at Coast Headquarters in Washington DC. -
Hurricane Sandy Rebuilding Strategy
Hurricane Sandy Rebuilding Task Force HURRICANE SANDY REBUILDING STRATEGY Stronger Communities, A Resilient Region August 2013 HURRICANE SANDY REBUILDING STRATEGY Stronger Communities, A Resilient Region Presented to the President of the United States August 2013 Front and Back Cover (Background Photo) Credits: (Front Cover) Hurricane Sandy Approach - NOAA/NASA (Back Cover) Hurricane Sandy Approach - NOAA/NASA Cover (4-Photo Banner) Credits - Left to Right: Atlantic Highlands, New Jersey - FEMA/ Rosanna Arias Liberty Island, New York - FEMA/Kenneth Wilsey Seaside Heights, New Jersey - FEMA/Sharon Karr Seaside Park, New Jersey - FEMA/Rosanna Arias Hurricane Sandy Letter from the Chair Rebuilding Strategy LETTER FROM THE CHAIR Last October, Hurricane Sandy struck the East Coast with incredible power and fury, wreaking havoc in communities across the region. Entire neighborhoods were flooded. Families lost their homes. Businesses were destroyed. Infrastructure was torn apart. After all the damage was done, it was clear that the region faced a long, hard road back. That is why President Obama pledged to work with local partners every step of the way to help affected communities rebuild and recover. In recent years, the Federal Government has made great strides in preparing for and responding to natural disasters. In the case of Sandy, we had vast resources in place before the storm struck, allowing us to quickly organize a massive, multi-agency, multi-state, coordinated response. To ensure a full recovery, the President joined with State and local leaders to fight for a $50 billion relief package. The Task Force and the entire Obama Administration has worked tirelessly to ensure that these funds are getting to those who need them most – and quickly. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Hazard Mitigation Plan – Dutchess County, New York 5.4.1-1 December 2015 Section 5.4.1: Risk Assessment – Coastal Hazards
Section 5.4.1: Risk Assessment – Coastal Hazards 5.4.1 Coastal Hazards 7KH IROORZLQJ VHFWLRQ SURYLGHV WKH KD]DUG SURILOH KD]DUG GHVFULSWLRQ ORFDWLRQ H[WHQW SUHYLRXV RFFXUUHQFHV DQG ORVVHV SUREDELOLW\ RI IXWXUH RFFXUUHQFHV DQG LPSDFW RI FOLPDWH FKDQJH DQG YXOQHUDELOLW\ DVVHVVPHQW IRU WKH FRDVWDO KD]DUGV LQ 'XWFKHVV &RXQW\ 3URILOH +D]DUG 'HVFULSWLRQ $ WURSLFDO F\FORQH LV D URWDWLQJ RUJDQL]HG V\VWHP RI FORXGV DQG WKXQGHUVWRUPV WKDW RULJLQDWHV RYHU WURSLFDO RU VXEWURSLFDO ZDWHUV DQG KDV D FORVHG ORZOHYHO FLUFXODWLRQ 7URSLFDO GHSUHVVLRQV WURSLFDO VWRUPV DQG KXUULFDQHV DUH DOO FRQVLGHUHG WURSLFDO F\FORQHV 7KHVH VWRUPV URWDWH FRXQWHUFORFNZLVH DURXQG WKH FHQWHU LQ WKH QRUWKHUQ KHPLVSKHUH DQG DUH DFFRPSDQLHG E\ KHDY\ UDLQ DQG VWURQJ ZLQGV 1:6 $OPRVW DOO WURSLFDO VWRUPV DQG KXUULFDQHV LQ WKH $WODQWLF EDVLQ ZKLFK LQFOXGHV WKH *XOI RI 0H[LFR DQG &DULEEHDQ 6HD IRUP EHWZHHQ -XQH DQG 1RYHPEHU KXUULFDQH VHDVRQ $XJXVW DQG 6HSWHPEHU DUH SHDN PRQWKV IRU KXUULFDQH GHYHORSPHQW 12$$ D 2YHU D WZR\HDU SHULRG WKH 86 FRDVWOLQH LV VWUXFN E\ DQ DYHUDJH RI WKUHH KXUULFDQHV RQH RI ZKLFK LV FODVVLILHG DV D PDMRU KXUULFDQH +XUULFDQHV WURSLFDO VWRUPV DQG WURSLFDO GHSUHVVLRQV SRVH D WKUHDW WR OLIH DQG SURSHUW\ 7KHVH VWRUPV EULQJ KHDY\ UDLQ VWRUP VXUJH DQG IORRGLQJ 12$$ E )RU WKH SXUSRVH RI WKLV +03 DQG DV GHHPHG DSSURSULDWHG E\ WKH 'XWFKHVV &RXQW\ 6WHHULQJ DQG 3ODQQLQJ &RPPLWWHHV FRDVWDO KD]DUGV LQ WKH &RXQW\ LQFOXGH KXUULFDQHVWURSLFDO VWRUPV VWRUP VXUJH FRDVWDO HURVLRQ DQG 1RU (DVWHUV ZKLFK DUH GHILQHG EHORZ Hurricanes/Tropical Storms $ KXUULFDQH LV D WURSLFDO -
Community Emergency Planning in NYC Toolkit
Community Emergency Planning in NYC A Toolkit for Community Leaders Introduction Emergency response in New York City is often challenged by the complexity of our physical and social environment. Communities are best understood by their own residents — a fact that makes community-based emergency planning and response highly effective. Each year, New York City experiences emergencies of all shapes and sizes. With aging infrastructure, higher frequency of natural disasters, and threats of terrorism, New York City is increasingly vulnerable. History and research have shown that communities that understand how to leverage internal networks are more successful in using their own resources and ultimately respond more effectively to their communities’ needs. The purpose of this toolkit to help your community become more resilient through a process of identifying existing networks, building new connections, and increasing your capacity to organize internal and external resources. Create a plan with your community now so that you are better prepared for the next emergency. WHAT IS IN THIS TOOLKIT? • New York City specific guidance for emergency planning. • A plan template and scenarios for Match communities to develop their own Community emergency plan. Community Resources to Needs Community Needs • Examples of other community Resources emergency planning efforts. Community Emergency WHO IS IT FOR? Planning This toolkit is designed to be a Coordinate Communicate group process. You define your own Planning and Needs and community — successful planning has Recovery Resources been done by housing developments, congregations, neighborhoods, etc. Examples of groups that could use the toolkit include: Government Resources • Tenant or civic associations • Faith-based groups • Community Emergency Response Teams (CERTs) • Community-based organizations (CBOs) • Community boards/coalitions 1 COMMUNITY EMERGENCY PLANNING LET’S GET STARTED! Your first step is to form a “lead team” — a group of interested community members who are willing to commit time and energy to this effort. -
Coastal Storms Are a Reality for New York City, Arriving As Hurricanes, Tropical Cyclones ,And Nor’Easters When Certain Meteorological Conditions Converge
CToaS AL STORMS CHAPTER 4.1 Coastal storms are a reality for New York City, arriving as hurricanes, tropical cyclones ,and nor’easters when certain meteorological conditions converge. Not only dangerous, these storms can be deadly, sustaining destructive winds, heavy rainfall, storm surge, coastal flooding, and erosion. Climate change and rising sea levels are likely to worsen their impacts. W HAT IS THE HAZARD? TROPICAL cycLONES Tropical cyclones are organized areas of precipitation and thunderstorms that form over warm tropical ocean waters and rotate counterclockwise around a low pressure center. Such storms are classified as follows: • A tropical depression is an organized system of clouds and thunderstorms with a defined low pressure center and maximum sustained winds of 38 miles per hour (mph) or less. • A tropical storm is an organized system of strong thunderstorms with a defined low pressure center and maximum sustained winds of 39 to 73 mph. • A hurricane is an intense tropical weather system of strong thunderstorms, a well-defined low pressure center (“eye”), and maximum sustained winds of 74 mph or more. In the North Atlantic Basin—where New York City is located—tropical cyclones often form in the Atlantic Ocean between Africa and the Lesser Antilles, in the Caribbean Sea, or in the Gulf of Mexico. Typically, they first track in a westerly or northwesterly direction. They are then pushed northward and eventually eastward by the force of the Earth’s rotation. They may track up the East Coast of the United States and reach New York City if water temperatures are warm enough and the prevailing winds steer them in this direction. -
Operational Storm Surge Modeling
Operational Storm Surge Modeling HFIP Annual Meeting November 17th, 2020 NHC Storm Surge Unit Laura Alaka Andrew Penny [email protected] [email protected] Hurricane Laura Introduction to Probabilistic Storm Surge • P-Surge is based on an ensemble of Sea, Lake, and Overland Surge from Hurricane (SLOSH) model runs • SLOSH: numerical-dynamic tropical storm surge model • SLOSH requires bathymetry and is applied to a ‘basin’ • SLOSH requires meteorological driving forces: “Wind model is just as important– if not more so– as a surge model” (Jelesnianski et al. 1992) • P-Surge ensemble incorporates uncertainty 2017090900 P-Surge Tracks using a statistical method based on NHC historical errors of: • Cross track (landfall location, # members varies) attempts to encompass 90% of cross track uncertainty • Along track (forward speed, 7 members) • Intensity (3 members) • Storm size (RMW, 3 members) Storm Size Matters P-Surge Upgrade v2.8 Improvements to initial storm structure P-Surge v2.7 • v2.7: RMW derived from SLOSH parametric wind profile often resulted in P-Surge ensemble failing to encompass observed storm size P-Surge v2.8 • v2.8: improvement when 3- member P-Surge storm size ensemble (small, medium, and large storms) initialized from Best track RMW P-Surge Retrospective Runs • 13 storms between 2008-2018: Spans the period of USGS pressure sensors • Evaluation Methodology: • Determine landfall advisory • Determine advisory when the 12-, 24-, 36-, 48-, 60-, 72-hr forecast points first came closest to the landfall point (the 60-hr was -
Hurricane Sandy Event Analysis Report | January 4042014 -446-2560 | 1 of 36 ACCEPTED
ACCEPTED FOR NERC PROCESSING NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION - 2019 Hurricane Sandy April 9 2:49 Event Analysis PM - SCPSC Report - ND-2019-3-E January 2014 - Page 1 of 36 RELIABILITY I ACCOUNTABILITY 3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 NERC | Hurricane Sandy Event Analysis Report | January 4042014 -446-2560 | www.nerc.com 1 of 36 ACCEPTED Table of Contents Table of Contents .......................................................................................................................................................2 FOR Objective .....................................................................................................................................................................4 PROCESSING Executive Summary ....................................................................................................................................................5 Background .................................................................................................................................................................6 Pre-existing System Conditions ..............................................................................................................................6 Affected Areas ........................................................................................................................................................6 Time Frame for Outage and Restoration ................................................................................................................6 -
Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure
Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure Office of Electricity Delivery and Energy Reliability U.S. Department of Energy April 2013 1 For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about this report may be directed to Alice Lippert, Acting Deputy Assistant Secretary, Energy Infrastructure Modeling and Analysis ([email protected]). Kevin DeCorla-Souza of ICF International contributed to this report. Cover: http://www.nasa.gov/images/content/701091main_20121028-SANDY-GOES-FULL.jpg i Contents Executive Summary ................................................................................................................... iv Storm Comparison ..................................................................................................................... 1 Irene ....................................................................................................................................... 1 Sandy ..................................................................................................................................... 2 Storm Surge and Tides ........................................................................................................... 4 Electricity Impacts ...................................................................................................................... 7 Power -
Timeline Based on OEM Emergency Notifications
timeline Based on OEM Emergency Notifications Record ID Date and Time NotificationType 103 10/24/2009 12:00:00 AM Transportation 104 10/24/2009 12:00:00 AM Utility 105 10/26/2009 12:00:00 AM zINACTIMass Transit Disruption 106 10/26/2009 12:00:00 AM Transportation 107 10/26/2009 12:00:00 AM Utility 108 10/28/2009 12:00:00 AM zINACTIVE *Fire 109 10/28/2009 12:00:00 AM Emergency Activity 110 10/29/2009 05:00:00 PM zINACTIVE * Aerial (Fly-Over) 111 10/31/2009 12:00:00 AM zINACTIVE *Fire 112 11/01/2009 12:00:00 AM Emergency Activity 113 11/02/2009 12:00:00 AM zINACTIVE *Structural 114 11/03/2009 12:00:00 AM Transportation 115 11/03/2009 12:00:00 AM Utility Page 1 of 1419 10/02/2021 timeline Based on OEM Emergency Notifications Notification Title [blank] [blank] [blank] [blank] Major Gas Explosion 32-25 Leavitt St. [blank] [blank] [blank] [blank] [blank] [blank] [blank] [blank] Page 2 of 1419 10/02/2021 timeline Based on OEM Emergency Notifications Email Body Notification 1 issued on 10/24/09 at 11:15 AM. Emergency personnel are on the scene of a motor vehicle accident involving FDNY apparatus on Ashford Street and Hegeman Avenue in Brooklyn. Ashford St is closed between New Lots Ave and Linden Blvd. Hegeman Ave is closed from Warwick St to Cleveland St. Notification 1 issued 10/24/2009 at 6:30 AM. Emergency personnel are on scene at a water main break in the Fresh Meadows section of Queens. -
Hazard Mitigation Plan June 2021
Westminster, Massachusetts Hazard Mitigation Plan June 2021 Hazard Mitigation Plan Westminster, Massachusetts Prepared by: BETA GROUP, INC. Prepared for: Town of Westminster June 2021 Hazard Mitigation Plan Westminster, Massachusetts TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................................ 1 1.1 Federal Disaster Mitigation Act .......................................................................................................... 1 1.2 Hazard Mitigation Plan Purpose ......................................................................................................... 1 2.0 Planning Process ..................................................................................................................................... 1 2.1 Local Hazard Mitigation Planning Team ............................................................................................. 1 2.2 Planning Process Summary ................................................................................................................. 2 2.3 Public Participation ............................................................................................................................. 2 3.0 Municipal Vulnerability Preparedness .................................................................................................... 2 3.1 Community Resilience Building Workshop ........................................................................................ -
Risk Assessment Severe Winter Storms
DRAFT UPDATED OCTOBER 2018 www.co.somerset.nj.us/hmp Section 5.4.2: Risk Assessment Severe Winter Storms SECTION 5.4.2: RISK ASSESSMENT – SEVERE WINTER STORM 5.4.2 SEVERE WINTER STORM This section provides a profile and vulnerability assessment for the severe winter storm hazard. HAZARD PROFILE This section provides profile information including description, extent, location, previous occurrences and losses and the probability of future occurrences. Description For the purpose of this HMP, as deemed appropriate by Somerset County, and per the State of New Jersey Hazard Mitigation Plan (NJ HMP), winter weather events include snow storms, ice storms, cold waves and wind chill with snow storms being “the most obvious manifestation of winter weather.” Since most extra-tropical cyclones (mid-Atlantic cyclones locally known as Northeasters or Nor’easters), generally take place during the winter weather months (with some events being an exception), these hazards have also been grouped as a type of severe winter weather storm. These types of winter events or conditions are further defined below. Heavy Snow: According to the National Weather Service (NWS), heavy snow is generally snowfall accumulating to 4 inches or more in depth in 12 hours or less; or snowfall accumulating to six inches or more in depth in 24 hours or less. A snow squall is an intense, but limited duration, period of moderate to heavy snowfall, also known as a snowstorm, accompanied by strong, gusty surface winds and possibly lightning (generally moderate to heavy snow showers) (NWS, 2005). Snowstorms are complex phenomena involving heavy snow and winds, whose impact can be affected by a great many factors, including a region’s climatologically susceptibility to snowstorms, snowfall amounts, snowfall rates, wind speeds, temperatures, visibility, storm duration, topography, and occurrence during the course of the day, weekday versus weekend, and time of season (Kocin and Uccellini, 2011).