(Hymenoptera, Ichneumonidae) in Eastern Fennoscandia

Total Page:16

File Type:pdf, Size:1020Kb

(Hymenoptera, Ichneumonidae) in Eastern Fennoscandia The study of Orthocentrinae s. l. (Hymenoptera, Ichneumonidae) in Eastern Fennoscandia Andrei Humala Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences, Pushkinskaya 11. Petrozavodsk 185610, Karelia, Russia. [email protected] Introduction The biological diversity in a very significant degree depends on insect species diversi- ty, as insects is one of the richest in species class of living organisms. Among them hymenopterous insects, and especially parasitic Hymenoptera occupy one of the first places. For instance, according to the modern data, there are more than 6000 known species of these insects occurring in Finland (Koponen et al. 1995). As a result, its fauna is not satisfactorily studied. This group is characterized by an exceptional species diversity, surpassing other groups of insects. Taxonomy of the family Ichneumonidae is for the present day poorly developed in comparison with other groups of insects (e.g. Lepidoptera or Coleopte- ra). Occupying the highest level in food chains, ichneumon-flies thus represent one of the vulnerable groups of organisms. The subject of my research is the fauna of Orthocentrinae, one of the least-studied subfamilies of ichneumon wasps. For a long time the species composition of this group and its position within the family Ichneumonidae were obscure. It is necessary to note that this group of ichneumon-flies is of significant theoretical interest, as it occupies a key position for the solving of some difficult questions in Ichneumonidae phylogeny. Orthocentrines are small, seldom medium-sized parasitic wasps. The average size of its body is about 3-5 mm. The diversity of morphological structure of Orthocentri- nae is very significant. The present study was mainly restricted to the Microleptinae Townes = Oxytorinae van Rossem = Helictinae (Dasch 1992). These ichneumon-flies are extremely various in habitus. Thus different genera were considered earlier in diffe- rent subfamilies. Even the subfamily name is unstable and has changed several times during last 30 years. It has traditionally been known by the name Microleptinae. Henry Townes – the best specialist in Ichneumonidae of our time, who devoted whole his life to its study, called this subfamily a “waste-basket” group (Townes 1971). The majority of specialists in this field of study consider now the group inside Orthocentrinae s. l. (Wahl 1986, Wahl & Gauld 1998). New views have persisted for the last 15 years and have been generally applied (Yu & Horstmann 1997). Until the beginning of XX century, when Walther Hellén started his Ichneumoni- dae study, the data on Eastern Fennoscandian fauna of this group was extremely scant. In a set of articles he observed Finnish fauna of ichneumonids and reported many species new for Finland. Since 1960s Reijo Jussila has began the study of Finnish Ichneumonidae, and cove- red many groups of this family. Based on van Rossem (1980) who revised the West Palaearctic fauna, he reported many species as new for the Finnish fauna and described two new species of Orthocentrinae as well (Jussila 1994). Karelian fauna of this subfa- mily was practically unstudied until the end of 1980s. ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ The Finnish Environment 485 ○○○○○○○○○○○ 193 Materials and methods For the present study extensive collections have been made in Karelia (Fig. 1), especially in nature reserves Kivach and Kostomukshski, National parks Vodlozerski and Paanajärvi, planned Kale- vala National Park, biosphere reserve “Northern Karelia” and Kizhi skerries. Concerning other are- as, as a rule briefly visited, only small and occa- sional samples were available. Malaise traps, win- dow traps of different modifications, light traps as well as sweep netting and rearing from mush- room fruit bodies were applied for the original materials collecting. Additional materials for the study were obtained from the collections of the Zoological Museum of Helsinki University and collections stored at the Department of Applied Zoology of Helsinki University, which I could stu- dy in 1996 and in 1998. Available collections of the Zoological Museum (St.Petersburg) from Eas- tern Fennoscandia were treated as well. The study of insects associated with various ecological groups of mushrooms has been con- ducted at the Forest Research Institute of Kareli- an Centre of Russian Academy of Sciences du- ring many years. Mycetophagous insects, their predators and parasites, as was found out in our researches, are very diverse and numerous in bo- real forests. At the present, the structure of Dip- tera and Coleoptera communities associated with Fig. 1 Collecting areas: large dots - places where mushrooms is rather well investigated. But not extensive collections were made. small dots - less various and numerous complex of their para- places where only small and occasional samples sites until now practically was not investigated. were collected Such data in the world literature are extremely scant, and the species-rich group of ichneumon- flies, as Orthocentrinae, parasitizing on larvae of fungus gnats, was almost not studied. Very little was known about the biology of the group, but some species indicated as koinobiont endoparasitoids of the Mycetophili- dae larvae (Wahl 1986). Results and discussion Special study aimed to make up for the deficiency of knowledge and to clarify the host preference of Orthocentrinae was performed in Karelia. Reliable data on the hosts preference were received by rearing from mushrooms fruit bodies. 21 species of ichneu- mon-flies, which are considered as the parasitoids of dipterous mycetobiontes, were reared from mushrooms. The range of the potential hosts of helictines includes 53 species of fungus gnats from 26 genera. According to literature essentially added by the original data, the majority of the subfamily representatives is a group, where main or even the only known hosts are Diptera, and moreover, only the primitive represen- tatives of this order, such as fungus gnats (superfamily Sciaroidea, mainly Mycetophi- lidae). Most of them are mycetofagous. 194 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○The Finnish Environment 485 It should be noted, that orthocentrines are an essential component of entomofau- na in forest and especially in taiga ecosystems. In boreal forests, caracterized by pre- sence of rather cool, damp, shaded habitats, these ichneumon wasps could be extreme- ly numerous. According to my own experience, in a Malaise trap sample (Fig. 2), perma- nently operating whole season per different years in Karelia (Kivach Nature reserve) and in Finland (North Karelian Biosphere reserve), Orthocentrinae in various biotopes comprise from 11% (in herb-rich aspen forest) up to 23% (in Cladonia pine forest), 26% (Myrtillus pine forest) and even 34% (mixed forest) of all individuals ichneumonids, which, in turn, exceeded half of all hymenopterous insects. During a season this ratio strongly varied, reaching a maximum in September, up to 50-65%. 1 3 20 % 21 % 26 % 34 % 9 % 10 % 15 % 15 % 13 % 15 % 5 % 4 % 8 % 5 % 4 2 11 % 24 % 23 % 24 % 17 % 3 % 9 % 10 % 5 % 10 % 18 % 8 % 8 % 30 % Orthocentrinae Cryptinae Tryphoninae Ctenopelmatinae Campopleginae Ichneumoninae Other Fig. 2 Structure of the family Ichneumonidae in Malaise trap samples in different forest types: 1 - mixed forest (North Karelian Biosphere reserve, Finland); 2-4 Karelia, Kivach Nature reserve: 2 - Cladonia type pine forest, 3 - Myrtillus type pine forest, 4 - herb-rich aspen forest. Species composition and the population structure of Orthocentrinae in various forest types are similar: the representatives of genera Plectiscidea, Plectiscus and Orthocentrus dominate in all biotopes, making up to about 25% of all Orthocentrinae individuals. Other abundant genera in Eastern Fennoscandia, as well as in all taiga zone, are also Proclitus, Pantisarthrus, Helictes, Aperileptus and Stenomacrus. Speaking about the zonal and landscape distribution of Orthocentrinae it is pos- sible to assert that it is a group of ichneumon-flies with distinctly forest distribution. Within the Russian fauna the areas of the overwhelming majority of species (almost 90%) wholly or mostly are situated within the borders of a forest zone. In general, orthocentrine fauna of Eastern Fennoscandia is typical for taiga zone. The species with wide areas, mainly Holarctic and Trans-Palaearctic boreal areas prevail here. Outside the forest zone orthocentrines are not so abundant and occur mostly in mountain areas. For the present study based on materials from Eastern Fennoscandia new data adding faunistic lists of ichneumonids of Karelia and Finland were obtained. ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ The Finnish Environment 485 ○○○○○○○○○○○ 195 As a result of researches there are revealed, that 23 of these ichneumon-flies (Micro- leptes rectangulus, Cylloceria tenuicornis, Allomacrus subtilis, Aniseres caudatus, A. subarcti- cus, Hemiphanes performidatum, H. townesi, Gnathochorisis xanthocephala, Proeliator proprius, Eusterinx (Holomeristus) aquilonigena, E. (Holomeristus) minima, E. (Holomeristus) refracta- ria, E. (Trestis) trifasciata, E. (Divinatrix) inaequalis, Helictes carinatus, H. karelicus, Plectis- cidea fuscifemur, P. helleni, P. deviata, P. koponeni) have been found to occur in Finland and are recorded for the first time for the Finnish fauna. Within 9 species new for science, description of two has already been published and seven more will be published soon. Two species should be excluded from the Finnish list. Helictes
Recommended publications
  • Rainfall and Parasitic Wasp (Hymenoptera: Ichneumonoidea
    Agricultural and Forest Entomology (2000) 2, 39±47 Rainfall and parasitic wasp (Hymenoptera: Ichneumonoidea) activity in successional forest stages at Barro Colorado Nature Monument, Panama, and La Selva Biological Station, Costa Rica B. A. Shapiro1 and J. Pickering Institute of Ecology, University of Georgia, Athens, GA 30602-2602, U.S.A. Abstract 1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old-growth and two 20-year-old stands) and four stands of moist forest in Panama (old-growth, 20, 40 and 120-year-old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old-growth trap was 1.89 times greater than the average catch per second-growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions. Keywords Barro Colorado Nature Monument, Ichneumonoidea, La Selva, parasitoids, precipitation, tropical moist forest, tropical wet forest. istics of each parasitoid species and abiotic factors. Seasonal Introduction patterns of insect activity are often correlated with temperature, One of the largest groups of parasitic Hymenoptera is the as processes such as development and diapause are often superfamily Ichneumonoidea, which consists of two families intimately associated with temperature change (Wolda, 1988). (the Ichneumonidae and the Braconidae), 64 subfamilies and an Fink & VoÈlkl (1995) gave several examples of small insects for estimated 100 000 species world-wide (Gauld & Bolton, 1988; which low humidity and high temperature have detrimental Wahl & Sharkey, 1993).
    [Show full text]
  • (Hymenoptera: Ichneumonidae: Orthocentrinae) from South Korea
    Anim. Syst. Evol. Divers. Vol. 36, No. 1: 85-90, January 2020 https://doi.org/10.5635/ASED.2020.36.1.039 Review article Taxonomic Review of the Genus Plectiscidea (Hymenoptera: Ichneumonidae: Orthocentrinae) from South Korea Jin-Kyung Choi1, Jong-Wook Lee2,* 1Department of Science Education, Daegu National University of Education, Daegu 42411, Korea 2Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea ABSTRACT The three newly recognized species of the genus Plectiscidea are reported in this: Plectiscidea aquilonia Humala, 2003, Plectiscidea bistriata (Thomson, 1888), and Plectiscidea collaris (Gravenhorst, 1829). Among them, P. bistriata is recorded for the first time in the Eastern Palaearctic region and this genus is reported for the first time from South Korea. A key to species of this genus and and photographs of each species are provided. Keywords: ‌new record, Parasitoids, Plectiscidea, taxonomy INTRODUCTION Gyeongsan, Korea). The morphological terminology follows that of Gauld (1991). Specimens were examined using an Ax- Orthocentrinae is a cosmopolitan subfamily of small body ioCam MRc5 camera attached to a stereo microscope (Zeiss sized Ichneumonidae, which is a moderately large group SteREO Discovery. V20; Carl Zeiss, Göttingen, Germany). and koinobiont endoparasitoids of Diptera. More than 520 The images were processed using AxioVision SE64 software described species have been recorded worldwide (Yu et al., (Carl Zeiss), and optimized using the Delta imaging system 2016). In South Korea, Orthocentrinae was reported 21 cur- (i-solution, IMT i-Solution Inc., Vancouver, Canada). Distri- rently described species into eight genera. In addition, re- butional data mainly follow that of Yu et al. (2016). views on genera Orthocentrus, Megastylus, and Proclitus are Abbreviations used in the South Korean province and type in process.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • The Hymenoptera of a Dry Meadow on Limestone
    POLISH JOURNAL OF ECOLOGY 47 1 29--47 1999 (Pol. J. Ecol.) W em er ULRICH Nicholas Copemicus University in Torun Department of Animal Ecology 87-100 Torun. Gagarina 9: Poland e-mail: ulrichw @ cc.uni.torun.pl 'I'HE HYMENOPTERA OF A DRY MEADOW ON LIMESTONE: SPECIES COMPOSITION, ABUNDANCE AND BIOMASS ABSTRACT: In 1986 and 1988 the hymenopterous fauna of a semixerophytic meadow on lime­ stone near Gottingen (FRG) was studied using ground-photo-eclectors. A total of 4982 specimens be­ longing to 475 different species \vere collected. Extrapolations from double-log functions revealed that there may be as many as 1330 parasitoid species present per year. 455 of the 475 species were parasito­ ids. 155 of them attack dipterans. 48 lepidopterans. 36 beetles. 23 wasps, 22 plant hoppers and 13 ap­ hids. 47 of the species are egg-parasitoids and parasitoids of miners. ectophytophages count for 44 of 2 the \V asp species. The abundance of the wasp fauna was rather high ( 1120 ± 53 in d. m- a- I ( 1986) and 2 1 335 ± 42 ind. m - a- ( 1988). Most abundant were the parasitoids of miners, gall-makers and the egg­ parasitoids. Compared \vith the high abundance the biomass was low. In 1986 the wasps weighed a total 2 1 2 1 of 194 ± 24 n1gDW m- a- and in 1988 only 69 ± 20 mgDW m- a- . The parasitoids of ectophytopha­ gous lepidopterans and coleopterans counted for n1ore than half of the whole biomass. KEY WORDS: Hymenoptera. parasitoids. faunal composition, density, biomass. species numbers, local extinction. 1. INTRODUCTION The insect order Hymenoptera is the species is very limited.
    [Show full text]
  • Papua New Guinea 13
    OUR PLANET REVIEWED – PAPUA NEW GUINEA 13 Land module of Our Planet Reviewed - Papua New Guinea: aims, methods and first taxonomical results Maurice Leponce (1), Vojtech Novotny (2, 3), Olivier Pascal (4), Tony Robillard (5), Frederic Legendre (5), Claire Villemant (5), Jérôme Munzinger (6), Jean-François Molino (6), Richard Drew (7), Frode Odegaard (8), Jürgen Schmidl (9), Alexey Tishechkin (17), Katerina Sam (3), Daniel Bickel (10), Chris Dahl (2, 3), Kipiro Damas (11), Tom M. Fayle (12, 2, 3), Bradley Gewa (2), Justine Jacquemin (1), Martin Keltim (2), Petr Klimes (2, 3) Bonny Koane (2), Joseph Kua (2), Antoine Mantilleri (5), Martin Mogia (2), Kenneth Molem (2), Jimmy Moses (2, 3) Hans Nowatuo (2), Jérôme Orivel (13), †Jean-Christophe Pintaud (14), Yves Roisin (15), Legi Sam (2, 3), Byron Siki (2), Laurent Soldati (16), Adeline Soulier-Perkins (5), Salape Tulai (2), Jacob Yombai (2), Carl Wardhaugh (3), Yves Basset (3, 18) (1) Biodiversity Monitoring & Assessment unit, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, 1000 Brussels, Belgium, [email protected] (2) The New Guinea Binatang Research Center, Nagada Harbour, P. O. Box 604, Madang, Papua New Guinea (3) Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic (4) Pro-Natura International, 15 avenue de Ségur 75007 Paris, France (5) Muséum national d’Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Sorbonne Universités, 45 rue Buffon, F-75005 Paris, France (6) IRD, UMR AMAP, Bd de la Lironde TA A51 / PS2, 34398 Montpellier cedex 5, France (7) International Centre for the Management of Pest fruit Flies, Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia (8) Norwegian Institute for Nature Research – NINA, Box: 5685 Sluppen NO-7485 Trondheim, Norway (9) Universität Erlangen-Nürnberg, staudtstr.
    [Show full text]
  • Species Richness of Neotropical Parasitoid Wasps (Hymenoptera: Ichneumonidae) Revisited
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. AII OSA - TOM. 274 BIOLOGICA - GEOGRAPHICA - GEOLOGICA SPECIEs RICHNEss OF NEOTrOPICAL PArAsITOID WAsPs (HYMENOPTErA: ICHNEUMONIDAE) REVIsITED by Anu Veijalainen TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012 From the Section of Biodiversity and Environmental Science, Department of Biology, University of Turku, Finland Supervised by Dr Terry L. Erwin National Museum of Natural History Smithsonian Institution, USA Dr Ilari E. Sääksjärvi Department of Biology University of Turku, Finland Dr Niklas Wahlberg Department of Biology University of Turku, Finland Unofficially supervised by Dr Gavin R. Broad Department of Life Sciences Natural History Museum, UK Reviewed by Dr Andrew Bennett Canadian National Collection of Insects Agriculture and Agri-Food, Canada Professor Donald L. J. Quicke Division of Ecology and Evolution Imperial College London, UK Examined by Dr Peter Mayhew Department of Biology University of York, UK ISBN 978-951-29-5195-6 (PRINT) ISBN 978-951-29-5196-3 (PDF) ISSN 0082-6979 Painosalama Oy – Turku, Finland 2012 Contents 3 CONTENTs LIsT OF OrIGINAL PAPErs.....................................................................................4 1. INTrODUCTION.....................................................................................................5 1.1 Obscurity of species diversity and distribution....................................................5 1.2 Large-scale patterns of parasitoid species richness..............................................6
    [Show full text]
  • Lajiluettelo 2019
    Lajiluettelo 2019 Artlistan 2019 Checklist 2019 Helsinki 2020 Viittausohje, kun viitataan koko julkaisuun: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. – Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Viittausohje, kun viitataan osaan julkaisusta, esim.: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, pistiäiset. – Julkaisussa: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Citerande av publikationen: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citerande av en enskild taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020. Hymenoptera, steklar. – I: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citation of the publication: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity Information Facility, Finnish Museum of Natural History, University of Helsinki, Helsinki Citation of a separate taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, sawflied, wasps, ants and bee. – In: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity
    [Show full text]
  • Analysis of the Role of Bradysia Impatiens (Diptera: Sciaridae) As a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana Benthamiana
    cells Article Analysis of the Role of Bradysia impatiens (Diptera: Sciaridae) as a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana benthamiana Marta Budziszewska, Patryk Fr ˛ackowiak and Aleksandra Obr˛epalska-St˛eplowska* Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, Władysława W˛egorka20, 60-318 Pozna´n,Poland; [email protected] (M.B.); [email protected] (P.F.) * Correspondence: [email protected] or [email protected] Abstract: Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurs- eries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV Citation: Budziszewska, M.; genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae Fr ˛ackowiak,P.; were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of Obr˛epalska-St˛eplowska,A.
    [Show full text]
  • Redalyc.A New Fossil Ichneumon Wasp from the Lowermost Eocene Amber
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Menier, J. J.; Nel, A.; Waller, A.; Ploëg, G. de A new fossil ichneumon wasp from the Lowermost Eocene amber of Paris Basin (France), with a checklist of fossil Ichneumonoidea s.l. (Insecta: Hymenoptera: Ichneumonidae: Metopiinae) Geologica Acta: an international earth science journal, vol. 2, núm. 1, 2004, pp. 83-94 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50500112 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.2, Nº1, 2004, 83-94 Available online at www.geologica-acta.com A new fossil ichneumon wasp from the Lowermost Eocene amber of Paris Basin (France), with a checklist of fossil Ichneumonoidea s.l. (Insecta: Hymenoptera: Ichneumonidae: Metopiinae) J.-J. MENIER, A. NEL, A. WALLER and G. DE PLOËG Laboratoire d’Entomologie and CNRS UMR 8569, Muséum National d’Histoire Naturelle 45 rue Buffon, F-75005 Paris, France. Menier E-mail: [email protected] Nel E-mail: [email protected] ABSTRACT We describe a new fossil genus and species Palaeometopius eocenicus of Ichneumonidae Metopiinae (Insecta: Hymenoptera), from the Lowermost Eocene amber of the Paris Basin. A list of the described fossil Ichneu- monidae is proposed. KEYWORDS Insecta. Hymenoptera. Ichneumonidae. n. gen., n. sp. Eocene amber. France. List of fossil species. INTRODUCTION Nevertheless, the present fossil record suggests that the family was already very diverse during the Eocene and Fossil ichneumonid wasps are not rare.
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
    Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.
    [Show full text]
  • 09 Vas02.Indd
    FOLIA ENTOMOLOGICA HUNGARICA ROVARTANI KÖZLEMÉNYEK Volume 77 2016 pp. 67–78 New records of wasps in Hungary and Romania (Hymenoptera: Ichneumonidae, Vespidae) Zoltán Vas Hungarian Natural History Museum, Department of Zoology, Baross utca 13, H-1088 Budapest, Hungary. E-mail: [email protected] Abstract – Ten ichneumon wasp (Ichneumonidae) and a potter wasp (Vespidae: Eumeninae) spe- cies were found to be new for the Hungarian fauna: Aperileptus fl avus Förster, 1871, Bathythrix decipiens (Gravenhorst, 1829), Diadromus heteroneurus Holmgren, 1890, Gelis discedens (Förster, 1850), Listrodromus nycthemerus (Gravenhorst, 1820), Melanichneumon leucocheilus (Wesmael, 1845), Myrmeleonostenus italicus (Gravenhorst, 1829), Oedemopsis scabricula (Gravenhorst, 1829), Rhadinodonta fl aviger (Wesmael, 1845), Tycherus planipectus (Holmgren, 1890), and the potter wasp Leptochilus limbiferus (Morawitz, 1867). Additionally, an ichneumon wasp species, Ophion ocellaris Ulbricht, 1926, is fi rst reported here from Romania. With 12 fi gures. Key words – Carpathian Basin, Aperileptus, Bathythrix, Diadromus, Gelis, Listrodromus, Melanich- neumon, Myrmeleonostenus, Oedemopsis, Rhadinodonta, Tycherus, Eumeninae, Leptochilus INTRODUCTION Ichneumon wasps (Ichneumonidae), despite they represent one of the most diverse families of the animal kingdom with a potentially great signifi cance in bio- logical control (Townes 1969, Wahl 1993), are among the most scarcely known insect groups even in the European fauna (see e.g. Vas 2013 for a Hungarian overview). Th e ongoing identifi cation process of the undetermined ichneumon wasp material in the Hungarian Natural History Museum (HNHM) has revealed further ten new species records for the Hungarian fauna, and one new record for the Romanian fauna. Additionally, a potter wasp species (Vespidae: Eumeninae) has been found new to Hungary. Hereby I report them in alphabetical order (fi rst by families and subfamilies, then by genera and species).
    [Show full text]
  • Canopy Fogging in the Canarian Laurel Forest of Tenerife and La Gomera by Peter E
    Weevil NEWS 1 May 2010 No. 51 Canopy fogging in the Canarian laurel forest of Tenerife and La Gomera by Peter E. Stüben 1,* , Lutz Behne 2, Andreas Floren 3, Hannes Günther 4, Seraina Klopfstein 5, Heriberto López 6, Antonio Machado 7, Martin Schwarz 8 , J. Wolfgang Wägele 9, Jörg Wunderlich 10 , Jonas J. Astrin 11,* with 35 figures 1 CURCULIO-Institute, Hauweg 62, D-41066 Mönchengladbach, Germany. Email: [email protected] 2 Senckenberg, Deutsches Entomologisches Institut, Eberswalder Str. 84, D-15374 Müncheberg, Germany. Email: [email protected] 3 Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany. Email: flo- [email protected] 4 Eisenacher Str. 25, D-55218 Ingelheim, Germany. Email: [email protected] 5 Naturhistorisches Museum Bern (WL), Bernastr. 15, CH-3005 Bern, Switzerland. Email: [email protected] 6 Departamento de Biología Animal - Zoología, Universidad de La Laguna, E-38071 La Laguna, Tenerife, Canary Islands, Spain. Email: [email protected] 7 Calle Chopin 1, E-382008 La Laguna, Tenerife, Canary Islands, Spain. Email: [email protected] 8 Eben 21, A-4202 Kirchschlag, Austria. Email: [email protected] 9 ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany. Email: w.waegele.zfmk@uni- bonn.de 10 Oberer Häuselbergweg 24, D-69493 Hirschberg, Germany. Email: [email protected] 11 ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, molecular lab, Adenauerallee 160, D-53113 Bonn, Germany. Email: [email protected] * The authors wish it to be known that in their opinion, J.Astrin and P.Stüben should be regarded as joint First Authors Received: 15 March 2010 Accepted: 9 April 2010 Published online: 1 May 2010 **In print: 1 May 2010 Abstract We describe the first inventory of canopy arthropods using the fogging method on the Canary Islands.
    [Show full text]