Rainfall and Parasitic Wasp (Hymenoptera: Ichneumonoidea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Hymenoptera – Not Coleoptera – Is the Most Speciose Animal Order
bioRxiv preprint doi: https://doi.org/10.1101/274431; this version posted March 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Quantifying the unquantifiable: 2 why Hymenoptera – not Coleoptera – is the most speciose animal order 3 4 Andrew A. Forbes, Robin K. Bagley, Marc A. Beer, Alaine C. Hippee, & Heather A. Widmayer 5 University of Iowa, Department of Biology, 434 Biology Building, Iowa City, IA 52242 6 7 Corresponding author: 8 Andrew Forbes 9 10 Email address: [email protected] 11 12 13 1 bioRxiv preprint doi: https://doi.org/10.1101/274431; this version posted March 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 Abstract 15 Background. We challenge the oft-repeated claim that the beetles (Coleoptera) are the most 16 species-rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, 17 are more speciose, due in large part to the massively diverse but relatively poorly known 18 parasitoid wasps. The idea that the beetles have more species than other orders is primarily based 19 on their respective collection histories and the relative availability of taxonomic resources, which 20 both disfavor parasitoid wasps. Though it is unreasonable to directly compare numbers of 21 described species in each order, the ecology of parasitic wasps – specifically, their intimate 22 interactions with their hosts – allows for estimation of relative richness. -
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
Insects Parasitoids: Natural Enemies of Helicoverpa
Queensland the Smart State insects Parasitoids: Natural enemies of helicoverpa Introduction Helicoverpa caterpillars (often called heliothis) are serious pests of many crops in Australia. A range of parasitoid and predatory insects attack helicoverpa. Identifying and conserving these beneficial insects is fundamental to implementing pest management with a reduced reliance on chemical insecticides. This brochure describes the most important parasitoids of helicoverpa in Australian broadacre crops. Parasitoids versus parasites: What’s the difference? Parasitoids kill their hosts; parasites (such Figure 1. Netelia producta is one of the as lice and fleas) do not. All the insects most commonly encountered parasitoids in this brochure are parasitoids. Despite of helicoverpa. Females lay their eggs onto this difference, the terms parasitoid and caterpillars, and the hatching wasp larva parasite are often used interchangeably, if feeds on its host, eventually killing it. inaccurately. Parasitoids such as Netelia can be important biological control agents of helicoverpa in crops. (Photo: K. Power) All comments about parasitoid abundance in this publication are based on field observations in southern Queensland farming systems. These patterns may not occur in all parts of Australia. About parasitoids What is a parasitoid? How do parasitoids find their A parasitoid is an insect that kills (parasitises) hosts? its host — usually another insect — in Many adult parasitoids find their host by order to complete its lifecycle. In Australia, smell. They can detect the direct odour of helicoverpa are parasitised by many species the host itself, or odours associated with host of wasps and flies. All helicoverpa immature activity, such as plant damage or caterpillar stages are parasitised (that is, egg, caterpillar frass (dung). -
(Hymenoptera: Ichneumonidae: Orthocentrinae) from South Korea
Anim. Syst. Evol. Divers. Vol. 36, No. 1: 85-90, January 2020 https://doi.org/10.5635/ASED.2020.36.1.039 Review article Taxonomic Review of the Genus Plectiscidea (Hymenoptera: Ichneumonidae: Orthocentrinae) from South Korea Jin-Kyung Choi1, Jong-Wook Lee2,* 1Department of Science Education, Daegu National University of Education, Daegu 42411, Korea 2Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea ABSTRACT The three newly recognized species of the genus Plectiscidea are reported in this: Plectiscidea aquilonia Humala, 2003, Plectiscidea bistriata (Thomson, 1888), and Plectiscidea collaris (Gravenhorst, 1829). Among them, P. bistriata is recorded for the first time in the Eastern Palaearctic region and this genus is reported for the first time from South Korea. A key to species of this genus and and photographs of each species are provided. Keywords: new record, Parasitoids, Plectiscidea, taxonomy INTRODUCTION Gyeongsan, Korea). The morphological terminology follows that of Gauld (1991). Specimens were examined using an Ax- Orthocentrinae is a cosmopolitan subfamily of small body ioCam MRc5 camera attached to a stereo microscope (Zeiss sized Ichneumonidae, which is a moderately large group SteREO Discovery. V20; Carl Zeiss, Göttingen, Germany). and koinobiont endoparasitoids of Diptera. More than 520 The images were processed using AxioVision SE64 software described species have been recorded worldwide (Yu et al., (Carl Zeiss), and optimized using the Delta imaging system 2016). In South Korea, Orthocentrinae was reported 21 cur- (i-solution, IMT i-Solution Inc., Vancouver, Canada). Distri- rently described species into eight genera. In addition, re- butional data mainly follow that of Yu et al. (2016). views on genera Orthocentrus, Megastylus, and Proclitus are Abbreviations used in the South Korean province and type in process. -
Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) in the North-East Algeria Abstract
Research iMedPub Journals European Journal of Experimental Biology 2016 http://www.imedpub.com/ Vol.6 No.6:6 ISSN 2248-9215 Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) In the North-East Algeria Bouzeraa H1, Achou M2, Sellami H1 and Slotani N1 1Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria 2Research Unit Toxicology-Environmental Microbiology and Health (UR11ES70), Faculty of Sciences of Sfax, University of Sfax, Tunisia Corresponding author: Bouzeraaa H, Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria, Tel: +234 8032886428; E-mail: [email protected] Received Date: November 24, 2016; Accepted Date: December 29, 2016; Published Date: December 31, 2016 Copyright: © 2016 Bouzeraaa H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Bouzeraa H, Achou M, Sellami H, et al. Study of the morphometric diversity of the population of honeybees (Apis mellifera) in the North- East Algeria. Eur Exp Biol. 2016, 6:6 In Algeria, 02 breeds have been identified: The first one, Apis mellifera intermissa (Tellian bee) described by Buttel-Reepen (in Abstract Ruttner), it is a breed of north Africa found in northern Algerian Sahara and Libya to Morocco [13-15]. The second breed, was A biometric study was conducted on domestic worker bees successively described by Baldensperger and also by Haccour coming from three 03 sites (Tahir, Al-Ancer and Ziama) of [16,17]. -
Hymenoptera (Stinging Wasps)
Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens. -
Biological Control of Insect Pests in the Tropics - M
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans. -
Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids. -
Scottish Bees
Scottish Bees Introduction to bees Bees are fascinating insects that can be found in a broad range of habitats from urban gardens to grasslands and wetlands. There are over 270 species of bee in the UK in 6 families - 115 of these have been recorded in Scotland, with 4 species now thought to be extinct and insufficient data available for another 2 species. Bees are very diverse, varying in size, tongue-length and flower preference. In the UK we have 1 species of honey bee, 24 species of bumblebee and the rest are solitary bees. They fulfil an essential ecological and environmental role as one of the most significant groups of pollinating insects, all of which we depend upon for the pollination of 80% of our wild and cultivated plants. Some flowers are in fact designed specifically for bee pollination, to the exclusion of generalist pollinators. Bees and their relatives Bees are classified in the complex insect order Hymenoptera (meaning membrane-winged), which also includes many kinds of parasitic wasps, gall wasps, hunting wasps, ants and sawflies. There are about 150,000 species of Hymenoptera known worldwide separated into two sub-orders. The first is the most primitive sub-order Symphyta which includes the sawflies and their relatives, lacking a wasp-waist and generally with free-living caterpillar-like larvae. The second is the sub-order Apocrita, which includes the ants, bees and wasps which are ’wasp-waisted’ and have grub-like larvae that develop within hosts, galls or nests. The sub-order Apocrita is in turn divided into two sections, the Parasitica and Aculeata. -
Papua New Guinea 13
OUR PLANET REVIEWED – PAPUA NEW GUINEA 13 Land module of Our Planet Reviewed - Papua New Guinea: aims, methods and first taxonomical results Maurice Leponce (1), Vojtech Novotny (2, 3), Olivier Pascal (4), Tony Robillard (5), Frederic Legendre (5), Claire Villemant (5), Jérôme Munzinger (6), Jean-François Molino (6), Richard Drew (7), Frode Odegaard (8), Jürgen Schmidl (9), Alexey Tishechkin (17), Katerina Sam (3), Daniel Bickel (10), Chris Dahl (2, 3), Kipiro Damas (11), Tom M. Fayle (12, 2, 3), Bradley Gewa (2), Justine Jacquemin (1), Martin Keltim (2), Petr Klimes (2, 3) Bonny Koane (2), Joseph Kua (2), Antoine Mantilleri (5), Martin Mogia (2), Kenneth Molem (2), Jimmy Moses (2, 3) Hans Nowatuo (2), Jérôme Orivel (13), †Jean-Christophe Pintaud (14), Yves Roisin (15), Legi Sam (2, 3), Byron Siki (2), Laurent Soldati (16), Adeline Soulier-Perkins (5), Salape Tulai (2), Jacob Yombai (2), Carl Wardhaugh (3), Yves Basset (3, 18) (1) Biodiversity Monitoring & Assessment unit, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, 1000 Brussels, Belgium, [email protected] (2) The New Guinea Binatang Research Center, Nagada Harbour, P. O. Box 604, Madang, Papua New Guinea (3) Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic (4) Pro-Natura International, 15 avenue de Ségur 75007 Paris, France (5) Muséum national d’Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Sorbonne Universités, 45 rue Buffon, F-75005 Paris, France (6) IRD, UMR AMAP, Bd de la Lironde TA A51 / PS2, 34398 Montpellier cedex 5, France (7) International Centre for the Management of Pest fruit Flies, Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia (8) Norwegian Institute for Nature Research – NINA, Box: 5685 Sluppen NO-7485 Trondheim, Norway (9) Universität Erlangen-Nürnberg, staudtstr. -
Species Richness of Neotropical Parasitoid Wasps (Hymenoptera: Ichneumonidae) Revisited
TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. AII OSA - TOM. 274 BIOLOGICA - GEOGRAPHICA - GEOLOGICA SPECIEs RICHNEss OF NEOTrOPICAL PArAsITOID WAsPs (HYMENOPTErA: ICHNEUMONIDAE) REVIsITED by Anu Veijalainen TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012 From the Section of Biodiversity and Environmental Science, Department of Biology, University of Turku, Finland Supervised by Dr Terry L. Erwin National Museum of Natural History Smithsonian Institution, USA Dr Ilari E. Sääksjärvi Department of Biology University of Turku, Finland Dr Niklas Wahlberg Department of Biology University of Turku, Finland Unofficially supervised by Dr Gavin R. Broad Department of Life Sciences Natural History Museum, UK Reviewed by Dr Andrew Bennett Canadian National Collection of Insects Agriculture and Agri-Food, Canada Professor Donald L. J. Quicke Division of Ecology and Evolution Imperial College London, UK Examined by Dr Peter Mayhew Department of Biology University of York, UK ISBN 978-951-29-5195-6 (PRINT) ISBN 978-951-29-5196-3 (PDF) ISSN 0082-6979 Painosalama Oy – Turku, Finland 2012 Contents 3 CONTENTs LIsT OF OrIGINAL PAPErs.....................................................................................4 1. INTrODUCTION.....................................................................................................5 1.1 Obscurity of species diversity and distribution....................................................5 1.2 Large-scale patterns of parasitoid species richness..............................................6 -
Reproductive Strategies in Parasitoid Wasps Author(S): Peter W
Reproductive Strategies in Parasitoid Wasps Author(s): Peter W. Price Source: The American Naturalist, Vol. 107, No. 957 (Sep. - Oct., 1973), pp. 684-693 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/2459667 . Accessed: 29/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The American Society of Naturalists are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org Vol. 107, No. 957 The American Naturalist September-October 1973 REPRODUCTIVE STRATEGIES IN PARASITOID WASPS* PETER W. PRICE Department of Entomology,University of Illinois, Urbana, Illinois 61801 Two closely related approaches to the study of reproductivestrategies have been pursued with success.Differences in timingof reproductiveeffort were explored in attemptingto explain the adaptive nature of differences in life historiesof organismsin the same taxonomicgroup (e.g., Cole 1954; Lewontin 1965; Murdoch 1966a, 1966b; Tinkle 1969; Emlen 1970; Gadgil and Bossert 1970). The other avenue of investigationhas concentratedon numbers of progeny produced, particularly clutch size (e.g., Lack 1954; Cody 1966). The latter approach appears to be the more rewarding in relationto an insect taxon where femalesusually ovipositsoon after emer- genceor as soon as hostsbecome available and in whichare containedspecies showingextremes in total fecuundity.