Poster Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

Poster Abstract Book ABSTRACT BOOK NCM VIRTUAL 30th Annual Meeting April 20 – 22, 2021 photo © Juan Carlos Fonseca Mata #NCM2021 www.ncm-society.org Table of Contents Poster Session 1 ............................................................................................................................................ 2 A – Control of Eye & Head Movement ...................................................................................................... 2 B – Fundamentals of Motor Control ......................................................................................................... 4 C – Posture and Gait ............................................................................................................................... 16 D – Integrative Control of Movement ..................................................................................................... 25 E – Disorders of Motor Control ............................................................................................................... 32 F – Adaptation & Plasticity in Motor Control .......................................................................................... 38 G – Theoretical & Computational Motor Control ................................................................................... 54 Poster Session 2 .......................................................................................................................................... 61 A – Control of Eye and Head Movement ................................................................................................ 61 B – Fundamentals of Motor Control ....................................................................................................... 63 C – Posture and Gait ............................................................................................................................... 74 D – Integrative Control of Movement ..................................................................................................... 82 E – Disorders of Motor Control ............................................................................................................... 89 F – Adaptation & Plasticity in Motor Control .......................................................................................... 95 G – Theoretical & Computational Motor Control ................................................................................. 110 Poster Session 3 ........................................................................................................................................ 119 A – Control of Eye and Head Movement .............................................................................................. 119 B – Fundamentals of Motor Control ..................................................................................................... 121 C – Posture and Gait ............................................................................................................................. 133 D – Integrative Control of Movement ................................................................................................... 141 E – Disorders of Motor Control ............................................................................................................. 148 F – Adaptation & Plasticity in Motor Control ........................................................................................ 154 G – Theoretical & Computational Motor Control ................................................................................. 169 NCM 2021 Poster Abstracts Poster Session 1 A – Control of Eye & Head Movement 1-A-1 Gain adaptation and variability of vestibular corticothalamic neurons shape our perception of natural self motion stimuli Presenting Author: Jerome Carriot Authors: Jerome Carriot¹, Isabelle Mackrous¹, Graham McAllister¹, Hamed Hooshangnejad², Kathleen Cullen², Chacron Maurice¹ ¹McGill University, ²Johns Hopkins University Natural stimuli display complex spatiotemporal characteristics that vary over many orders of magnitude. In order to encode such stimuli efficiently, sensory systems must continuously adapt by changing their response properties. However, the computational role of such adaptation remains poorly understood in the context in which adaptation can increase coding ambiguity. Here we first investigated how vestibular thalamocortical neurons and their afferent input neurons within the vestibular nuclei respond to both simple artificial and more complex natural self-motion stimuli in rhesus macaques. We found that both groups displayed comparable response properties to artificial stimuli which led to ambiguity. However, while such ambiguity persisted for artificial stimuli for vestibular nuclei neurons, vestibular thalamocortical neurons instead faithfully and unambiguously followed the detailed timecourse of natural self-motion stimuli. A mathematical model including known filtering properties as well as gain adaptation successfully reproduced our experimental data, thereby showing that gain adaptation plays an essential role towards removing coding ambiguity. We demonstrate that vestibular thalamocortical neurons are best optimized to encode natural self-motion stimuli as opposed to vestibular nuclei neurons. Our results challenge the common wisdom that adaptation leads to ambiguity by showing that, instead, such adaptation actually leads to faithful and unambiguous encoding of natural stimuli. Second, we investigated the role of these vestibular thalamocortical neurons in the perception of self-motion. Specifically, we tested whether their responses can account for a violation of Weber's law, namely that discrimination performance is enhanced at higher stimulus amplitudes. To do so, we quantified how neuronal gain and variability varied as a function of stimulus amplitude and computed neural discrimination thresholds. While neural gain strongly decreased as a function of stimulus amplitude, neural variability instead initially increased at low values but saturated at high values. As a result, neural thresholds were not proportional to stimulus amplitude as they also saturated at higher values. Further, while single neuron discrimination thresholds were two-fold higher than those of perception, values computed from neural populations agreed with perception for all amplitudes. Thus, overall, the dependency of neural population discrimination thresholds on stimulus amplitude can explain why vestibular perceptual performance is better than that predicted from Weber's law. Our results uncover a novel role for neural variability in shaping how sensory pathways generate perception. Taken together, we further provide novel insights as to how variability and gain control contribute to adaptive encoding of natural stimuli with continually varying statistics. 1-A-2 The effect of spatial frequency on visual-vestibular conflict detection and self-reported simulator sickness Presenting Author: Savannah Halow Authors: Savannah Halow¹, Paul MacNeilage¹, Eelke Folmer¹ ¹University of Nevada, Reno Perception of a stable visual environment depends on mechanisms that monitor the agreement between visual and non-visual cues to head movement. Visual cues include a combination of optic flow and oculomotor signals needed to bring retinal motion into head coordinates. Non-visual cues include vestibular signals as well as efference copies of motor commands to rotate the head on the body. Conflict between these signals is associated with debilitating conditions such as motion or simulator sickness. Here we investigate how characteristics of the visual scene impact observers' ability to detect visual-vestibular conflict and the corresponding levels of subjective simulator sickness. Experiments were conducted using a head-mounted display (HTC Vive Pro Eye) with fixation behavior monitored by its embedded eye tracker. On each trial, participants made active yaw head movements of ~30 deg over 1.5 sec while fixating a scene- or head-fixed point. During the head movement, the gain on the visual scene motion was manipulated. Participants were asked to report whether the gain was too low or too high, that is, if the environment appeared to be moving with or against head movement, respectively. Additionally, participants were asked to report their relative level of sickness approximately every 3 minutes during the experiment based on a 1-10 Discomfort Score scale. Finally, participants also filled out a Simulator Sickness Questionnaire immediately after each of the condition blocks. Fitting a psychometric function to the resulting data yields the gain perceived as stationary (PSE) and the range of gains that are compatible with perception of a stationary visual environment (JND), referred to by Wallach as the Range of Immobility. Participants were tested using a virtually rendered optokinetic drum with either a low or high-frequency stripe pattern. Our results revealed higher visual gains were seen as stationary (lower PSEs) in the low-frequency condition suggesting slower perceived speed of scene motion. This is consistent with the known effect of spatial frequency on perceived speed of retinal image motion. Sensitivity to conflict was also best (lower JND) in the low-frequency condition consistent with the idea of signal-dependent noise on estimated scene motion. These results quantify the relationship between spatial frequency, detection of visual-vestibular conflict, and self-reported simulator sickness. Acknowledgments: Research was supported
Recommended publications
  • Understanding Optical Illusions
    Understanding Optical Illusions Mohit Gupta What are optical illusions? Perception: I see Light (Sensing) Truth: But this is an ! Oracle Optical Illusion in Nature Image Courtesy: http://apollo.lsc.vsc.edu/classes/met130/notes/chapter19/graphics/infer_mirage_road.jpg A Brightness Illusion Different kinds of illusions • Brightness and Contrast Illusions • Twisted Cord Illusions • Color Illusions • Perspective Illusions • Relative Motion Illusions • Illusions of Expressions Lightness Constancy Our Vision System tries to compensate for differences in illumination Why study optical illusions? • Studying how brain is fooled teaches us how it works “Illusions of the senses tell us the truth about perception” [Purkinje] • It makes us happy : Al Seckel Simultaneous Contrast Illusions Low-level Vision Explanation Negative Positive Photo-receptors Photo-receptors Receptive Fields in the Retina - Inhibitory Excitatory Light - + - Light - Low-level Vision Explanation - - - + - - + - Positive - - Negative Gradient Gradient High-level Vision Explanation: Context Less Incident More Incident Illumination Illumination Higher Perceived Lower Perceived Reflectance Reflectance Brightness = Reflectance * Incident Illumination The Hermann grid illusion The Hermann grid: Low level Explanation - - + - - Lateral Inhibition The Hermann grid illusion Focus on one intersection Why does the illusion disappear? Receptive fields are smaller near the fovea (center) of the eye The Waved Grid: No illusion! Scintillating Grids: Straight and Curved Adelson’s checkerboard
    [Show full text]
  • A Defence of Separatism
    A Defence of Separatism by Boyd Millar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Philosophy University of Toronto © Copyright by Boyd Millar (2010) A Defence of Separatism Boyd Millar Doctor of Philosophy Graduate Department of Philosophy University of Toronto 2010 Abstract Philosophers commonly distinguish between an experience’s intentional content—what the experience represents—and its phenomenal character—what the experience is like for the subject. Separatism —the view that the intentional content and phenomenal character of an experience are independent of one another in the sense that neither determines the other—was once widely held. In recent years, however, separatism has become increasingly marginalized; at present, most philosophers who work on the issue agree that there must be some kind of necessary connection between an experience’s intentional content and phenomenal character. In contrast with the current consensus, I believe that a particular form of separatism remains the most plausible view of the relationship between an experience’s intentional content and phenomenal character. Accordingly, in this thesis I explain and defend a view that I call “moderate separatism.” The view is “moderate” in that the separatist claim is restricted to a particular class of phenomenal properties: I do not maintain that all the phenomenal properties instantiated by an experience are independent of that experience’s intentional content but only that this is true of the sensory qualities instantiated by that experience. I argue for moderate separatism by appealing to examples of ordinary experiences where sensory qualities and intentional content come apart.
    [Show full text]
  • The Freudian Slip Staff
    The Freudian Slip CSB/SJU Psychology Department Newsletter College of Saint Benedict & Saint John’s University Sigmund Freud, photo- graph (1938) May 2013 DSM-5 By Hannah Stevens at who is making these decisions. The decisions about changes are made by 13 different work The Diagnostic and Statistical Manual of groups specializing in different sections. There are Mental Disorders or DSM is a manual giving the a total of 160 psychiatrists, psychologists, and Staff criteria for all recognized mental disorders. The other health professionals. It is a long process that first DSM dates back to before World War II and requires looking at recent research and debating Rachel Heying, provided seven different categories of mental with other professionals. health: mania, melancholia, monomania, paresis, “Imperfections dementia, dipsomania, and epilepsy. Since then The changes in the DSM-5 will have a of Perception” the DSM has been revised to fit mental health as significant impact on the field of psychology. we know it today. It is currently in its fifth revision Many practicing psychologist will have to relearn Hannah Stevens, and is due to come out this May. The current new criteria for mental disorders, as well as new “DMV-5” DSM, the DSM-IV-TR (text revision) reflects what mental disorders all together. This may be the information we have gained in mental health and cause of some of the controversy, however hope- Natalie Vasilj, our newest knowledge and research on it. In past fully with new research the DSM-5 will better rep- “Mental Health revisions major changes have been made because resent mental health.
    [Show full text]
  • Symmetric Networks with Geometric Constraints As Models of Visual Illusions
    S S symmetry Article Symmetric Networks with Geometric Constraints as Models of Visual Illusions Ian Stewart 1,*,† and Martin Golubitsky 2,† 1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 2 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 May 2019; Accepted: 13 June 2019; Published: 16 June 2019 Abstract: Multistable illusions occur when the visual system interprets the same image in two different ways. We model illusions using dynamic systems based on Wilson networks, which detect combinations of levels of attributes of the image. In most examples presented here, the network has symmetry, which is vital to the analysis of the dynamics. We assume that the visual system has previously learned that certain combinations are geometrically consistent or inconsistent, and model this knowledge by adding suitable excitatory and inhibitory connections between attribute levels. We first discuss 4-node networks for the Necker cube and the rabbit/duck illusion. The main results analyze a more elaborate model for the Necker cube, a 16-node Wilson network whose nodes represent alternative orientations of specific segments of the image. Symmetric Hopf bifurcation is used to show that a small list of natural local geometric consistency conditions leads to alternation between two global percepts: cubes in two different orientations. The model also predicts brief transitional states in which the percept involves impossible rectangles analogous to the Penrose triangle. A tristable illusion generalizing the Necker cube is modelled in a similar manner.
    [Show full text]
  • Optical Illusion - Wikipedia, the Free Encyclopedia
    Optical illusion - Wikipedia, the free encyclopedia Try Beta Log in / create account article discussion edit this page history [Hide] Wikipedia is there when you need it — now it needs you. $0.6M USD $7.5M USD Donate Now navigation Optical illusion Main page From Wikipedia, the free encyclopedia Contents Featured content This article is about visual perception. See Optical Illusion (album) for Current events information about the Time Requiem album. Random article An optical illusion (also called a visual illusion) is characterized by search visually perceived images that differ from objective reality. The information gathered by the eye is processed in the brain to give a percept that does not tally with a physical measurement of the stimulus source. There are three main types: literal optical illusions that create images that are interaction different from the objects that make them, physiological ones that are the An optical illusion. The square A About Wikipedia effects on the eyes and brain of excessive stimulation of a specific type is exactly the same shade of grey Community portal (brightness, tilt, color, movement), and cognitive illusions where the eye as square B. See Same color Recent changes and brain make unconscious inferences. illusion Contact Wikipedia Donate to Wikipedia Contents [hide] Help 1 Physiological illusions toolbox 2 Cognitive illusions 3 Explanation of cognitive illusions What links here 3.1 Perceptual organization Related changes 3.2 Depth and motion perception Upload file Special pages 3.3 Color and brightness
    [Show full text]
  • What's New and Important in Pediatric Ophthalmology and Strabismus In
    What’s New and Important in Pediatric Ophthalmology and Strabismus in 2021 Complete Unabridged Handout AAPOS Virtual Meeting April 2021 Presented by the AAPOS Professional Education Committee Tina Rutar, MD - Chairperson Austin E Bach, DO Kara M Cavuoto, MD Robert A Clark, MD Marina A Eisenberg, MD Ilana B Friedman, MD Jennifer A Galvin, MD Michael E Gray, MD Gena Heidary, MD PhD Laryssa Huryn, MD Alexander J Khammar MD Jagger Koerner, MD Eunice Maya Kohara, DO Euna Koo, MD Sharon S Lehman, MD Phoebe Dean Lenhart, MD Emily A McCourt, MD - Co-Chairperson Julius Oatts, MD Jasleen K Singh, MD Grace M. Wang, MD PhD Kimberly G Yen, MD Wadih M Zein, MD 1 TABLE OF CONTENTS 1. Amblyopia page 3 2. Vision Screening page 12 3. Refractive error page 20 4. Visual Impairment page 31 5. Neuro-Ophthalmology page 37 6. Nystagmus page 48 7. Prematurity page 52 8. ROP page 55 9. Strabismus page 65 10. Strabismus surgery page 82 11. Anterior Segment page 101 12. Cataract page 108 13. Cataract surgery page 110 14. Glaucoma page 120 15. Refractive surgery page 127 16. Genetics page 128 17. Trauma page 151 18. Retina page 156 19. Retinoblastoma / Intraocular tumors page 167 20. Orbit page 171 21. Oculoplastics page 175 22. Infections page 183 23. Pediatrics / Infantile Disease/ Syndromes page 186 24. Uveitis page 190 25. Practice management / Health care systems / Education page 192 2 1. AMBLYOPIA Self-perception in Preschool Children With Deprivation Amblyopia and Its Association With Deficits in Vision and Fine Motor Skills. Birch EE, Castaneda YS, Cheng-Patel CS, Morale SE, Kelly KR, Wang SX.
    [Show full text]
  • OPTICAL ILLUSIONS Matyas Molnar More Info, Examples, Sources
    OPTICAL ILLUSIONS Matyas Molnar More info, examples, sources • Mohit Gupta: Understanding optical illusions • https://www.eyebuydirect.com/understanding-perception-optical-illusions • https://www.rd.com/culture/optical-illusions/ • https://www.thisisinsider.com/classic-optical-illusions-2018-1#this-is- troxlers-fading-circle-if-you-stare-the-dot-for-at-least-20-seconds-the-circle- will-completely-fade-away-20 • https://interestingengineering.com/11-puzzling-optical-illusions-and-how- they-work • https://www.collective-evolution.com/2017/07/26/ex-nasa-scientists-share- concealed-information-about-the-face-pyramid-found-on-mars/ • https://www.buzzfeed.com/arielknutson/people-who-found-jesus-in-their- food Preface • Microscopy is a visualization technique – the danger: we tend to believe what we see but humans are fooled by their vision in many different ways • We see / don’t see what we – want / don’t want to see – learnt / didn’t learn to se – others expect / don’t expect us to see • Humans are not rational beings. Our perception and decisions are governed by our emotions and earlier experiences. We make decisions emotionally, only later we justify them with logical explanations. • Biggest effects and limitations are in the following levels: – Eyes – Brain – Environment – Culture, religion, belief systems • We cannot perceive the world objectively outside of our box • Is there any objective world outside us? Preface • Many times there are no consensus on how an actual optical illusion works. • Hard to explain optical illusions with one unified theory, numerous factors are involved • There are various theories and counter theories, and sometimes it's also not clear if the illusion or type of illusion acts on the physical visual system or on the brain level.
    [Show full text]
  • Optical Illusions and Their Causes Examining Differing Explanations
    Optical Illusions and their Causes Examining Differing Explanations Sarah Oliver AHS Capstone 9 May, 2006 Illusion is the first of all pleasures. Oscar Wilde Introduction Optical illusions stimulate us by challenging us to see things in a new way. They are interesting within scientific disciplines because they lie on the border of what we are able to see. According to Al Seckel (2000), they “…are very useful tools for vision scientists, because they can reveal the hidden constraints of the perceptual system in a way that normal perception does not.” Different kinds of optical illusions may be better explained by one discipline or another. Some optical illusions trick us because of the properties of light and the way our eyes work, and are addressed by biology and perhaps optics, while other illusions depend on a “higher” level of processing which is better addressed by psychology. Some illusions can only be fully explained using knowledge of more than one discipline. When there are both biological and psychological explanations, they may both be right. There is already a substantial body of work that specifically addresses optical illusions, however, there is still enough disagreement within disciplines and between disciplines to make this an interesting project. One of the challenges of this project is the question of how to choose a satisfactory definition of “optical illusion.” Every source has a different definition that includes or excludes phenomena as it suits the author’s purpose. Gregory, one of the most well-known researchers of optical illusions, notes that illusion 1 … may be the departure from reality, or from truth; but how are these to be defined? As science’s accounts of reality get ever more different from appearances, to say that this separation is ‘illusion’ would have the absurd consequence of implying that almost all perceptions are illusory.
    [Show full text]
  • Systematic Structural Analysis of Optical Illusion Art and Application in Graphic Design with Autism Spectrum Disorder
    SYSTEMATIC STRUCTURAL ANALYSIS OF OPTICAL ILLUSION ART AND APPLICATION IN GRAPHIC DESIGN WITH AUTISM SPECTRUM DISORDER RELATORE :PROF. ARCH. PH.D ANNA MAROTTA CORRELATORE : ARCH. PH.D ROSSANA NETTI STUDENT:LI HAORAN SYSTEMATIC STRUCTURAL ANALYSIS OF OPTICAL ILLUSION ARTAND APPLICATION IN GRAPHIC DESIGN WITH AUTISM SPECTRUM DISORDER Abstract To explore the application of optical illusion in different fields, taking M.C. Escher's painting as an example, systematic analysis of optical illusion, Gestalt psychology, and Geometry are performed. Then, from the geometric point of view, to analyze the optical illusion formation model. Taking Fraser Spiral Illusion and Herring Illusion as examples, through the dismantling and combination of Fraser Spiral Illusion and the analysis of the spiral angle, and Herring Illusion tilt angle analysis, the structure of the graph is further explored. This results in a geometric drawing method that optimizes the optical illusion effect and applies this method to graphic design combined with the autism spectrum. Therefore, this project will remind the ordinary people and designers to pay attention to the universal design while also paying attention to extreme people through the combination of graphic design and optical illusion. That is, focus on autism spectrum disorder (ASD), provide more inclusive design and try their best to provide autism spectrum with the deserving autonomy and independence in public space. Meanwhile, making the autism spectrum “integrate” into the general public’s environment so that their abilities match the environment and improve self-care capabilities. Keywords Autism Spectrum Disorder, Inclusive Design, Graphic Design, Gestalt Psychology, Optical Illusion, Systemic Perspective Introduction 1. Systematic analysis of the content of the thesis 1.1 The purpose and the significance of study 1.1.1 Methodology with system diagram framework 2.
    [Show full text]
  • Understanding Optical Illusions
    Understanding Optical Illusions Mohit Gupta What are optical illusions? Perception: I see Light (Sensing) Truth: But this is an ! Oracle Optical Illusion in Nature Image Courtesy: http://apollo.lsc.vsc.edu/classes/met130/notes/chapter19/graphics/infer_mirage_road.jpg A Brightness Illusion Different kinds of illusions • Brightness and Contrast Illusions • Twisted Cord Illusions • Color Illusions • Perspective Illusions • Relative Motion Illusions • Illusions of Expressions Lightness Constancy Our Vision System tries to compensate for differences in illumination Why study optical illusions? • Studying how brain is fooled teaches us how it works “Illusions of the senses tell us the truth about perception” [Purkinje] • It makes us happy J : Al Seckel Simultaneous Contrast Illusions Low-level Vision Explanation Negative Positive Photo-receptors Photo-receptors Receptive Fields in the Retina - Inhibitory Light Excitatory - + - Light - Low-level Vision Explanation - - - + - - + - Positive - - Negative Gradient Gradient High-level Vision Explanation: Context Less Incident More Incident Illumination Illumination Higher Perceived Lower Perceived Reflectance Reflectance Brightness = Reflectance * Incident Illumination The Hermann grid illusion The Hermann grid: Low level Explanation - - + - - Lateral Inhibition The Hermann grid illusion Focus on one intersection Why does the illusion disappear? Receptive fields are smaller near the fovea (center) of the eye The Waved Grid: No illusion! Scintillating Grids: Straight and Curved Adelson’s checkerboard
    [Show full text]
  • Optical Illusions and Their Causes Examining Differing Explanations
    Olin College of Engineering DigitalCommons@Olin 2006 AHS Capstone Projects AHS Capstone Projects 4-1-2006 Optical Illusions and Their aC uses: Examining Differing Explanations Sarah Oliver Franklin W. Olin College of Engineering, [email protected] Follow this and additional works at: http://digitalcommons.olin.edu/ahs_capstone_2006 Part of the Biology Commons, and the Psychology Commons Recommended Citation Oliver, Sarah, "Optical Illusions and Their aC uses: Examining Differing Explanations" (2006). 2006 AHS Capstone Projects. Paper 7. http://digitalcommons.olin.edu/ahs_capstone_2006/7 This Article is brought to you for free and open access by the AHS Capstone Projects at DigitalCommons@Olin. It has been accepted for inclusion in 2006 AHS Capstone Projects by an authorized administrator of DigitalCommons@Olin. For more information, please contact [email protected]. Optical Illusions and their Causes Examining Differing Explanations Sarah Oliver AHS Capstone 9 May, 2006 Illusion is the first of all pleasures. Oscar Wilde Introduction Optical illusions stimulate us by challenging us to see things in a new way. They are interesting within scientific disciplines because they lie on the border of what we are able to see. According to Al Seckel (2000), they “…are very useful tools for vision scientists, because they can reveal the hidden constraints of the perceptual system in a way that normal perception does not.” Different kinds of optical illusions may be better explained by one discipline or another. Some optical illusions trick us because of the properties of light and the way our eyes work, and are addressed by biology and perhaps optics, while other illusions depend on a “higher” level of processing which is better addressed by psychology.
    [Show full text]
  • University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]