(Oryza Spp.) List of Descriptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defense and Counter-Defense in Rice–Virus Interactions Jiaqi Qin, Ci Wang, Leqi Wang, Shanshan Zhao* and Jianguo Wu*
Qin et al. Phytopathology Research (2019) 1:34 https://doi.org/10.1186/s42483-019-0041-7 Phytopathology Research REVIEW Open Access Defense and counter-defense in rice–virus interactions Jiaqi Qin, Ci Wang, Leqi Wang, Shanshan Zhao* and Jianguo Wu* Abstract Rice viruses, known as “rice killer”, are vector-borne pathogens that cause severe disease and significant yield loss in rice production around the world. Rice virus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of rice antiviral responses, particularly the RNA silencing pathway and plant hormone pathways, which play vital roles in antiviral immunity. Classical rice virus disease control strategies include chemotherapeutics and use of disease resistance rice varieties. Here, we summarize recent advances in understanding the mechanisms behind the immune evasion and rice viral pathogenesis. Based on these mechanistic insights, we discuss how to combine different strategies for maintaining the effectiveness of rice resistance to viruses, and propose theoretical basis for the next generation of virus-resistant rice plants. Keywords: Rice virus, Antiviral defense, Pathogenesis Background the biggest challenge is how to control rice virus dis- Rice is the most important crop in Asia and provides eases effectively and in an environmentally friendly staple food for half of the world’spopulation.Rice way. virus disease causes severe disease of rice in China Rice viruses are obligate intracellular parasites that and many other East Asia countries (Nicaise 2014). replicate, express viral proteins and establish infection Up to now, 17 rice virus diseases have been reported process in host cell. -
Nilaparvata Lugens, Stal) Population Of
Journal of Entomology and Zoology Studies 2017; 5(5): 1445-1449 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Baseline susceptibility of sulfoxaflor 24 SC JEZS 2017; 5(5): 1445-1449 © 2017 JEZS insecticide on paddy brown planthopper, Received: 06-07-2017 Accepted: 07-08-2017 (Nilaparvata lugens, Stal) population of Mahantesh Kapasi Northeastern Karnataka Assistant Professor of Entomology, Agricultural College Kalaburagi, UAS, Raichur, Karnataka, India Mahantesh Kapasi, Bheemanna M, Guruprasad GS and Vijaykumar Ghante Bheemanna M Professor and Head, PRFQAL, UAS, Raichur, Abstract Karnataka, India Baseline susceptibility of sulfoxaflor 24 SC insecticide was investigated by collecting field populations of brown planthopper from different locations of northeastern Karnataka during 2014-15 and 2015-16. Guruprasad GS All the selected populations differed in their susceptibility to sulfoxaflor. In general, Gangavati and Scientist, ARS, Gangavati, Sindhanur BPH population recorded higher LC50 values of 29.95 and 27.75 ppm respectively, followed UAS, Raichur, Karnataka, India by Ballari (26.16 ppm), Manvi (25.03 ppm) and Devadurga (22.68 ppm). Lowest LC50 value was observed in population collected from Kembhavi (21.56 ppm) during 2014-15. The similar trend was Vijaykumar Ghante noticed during 2015-16 season. The comparison studies were made with dinotefuran 20 SG and Scientist, MARS, UAS, buprofezin 25 SC insecticides for a population collected from Gangavati. Raichur, Karnataka, India Keywords: Nilaparvata lugens, Insecticide resistance, baseline susceptibility and sulfoxaflor Introduction The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is continuing to be a serious pest of rice in Asia. In 1927 it was first time reported as sporadic pest on rice crop of Guntur district in Andhra Pradesh, India [1]. -
Boosting Agricultural Efficiency and Output Through Targeted Interventions
PA R T I V Boosting Agricultural Efficiency and Output through Targeted Interventions CHAPTER 1 5 Increasing Rice Productivity and Strengthening Food Security through New Rice for Africa (NERICA) Aliou Diagne, Soul-Kifouly Gnonna Midingoyi, Marco Wopereis, and Inoussa Akintayo espite Africa’s potentially rich land and water capita rice consumption in West Africa increased from resources, its farmers are among the poorest in the 14 kilograms in the 1970s to 22 kilograms in the 1980s and world. Because the vast majority of people in more than 39 kilograms in 2009. For Africa as whole, annual DAfrica der ive their livelihoods from agriculture, the weak per capita rice consumption increased from 11 kilograms in state of the sector has profound implications for poverty.1 the 1970s to 21 kilograms in 2009 (figure 15.1). Since the Agricultural innovation in Africa needs to internalize the early 1970s rice has been the number one source of caloric region’s biophysical, institutional, and socioeconomic con- intake in West Africa and the third most important source straints and establish efficient value chains to support sus- of calories (after maize and cassava) for the continent as a tainable growth and reduce poverty. whole (figure 15.2). Agricultural research can catalyze agricultural innova- Domestic rice production grew at the rate of 6 percent a tion and the development of the value chain. A prime exam- year between 2001 and 2005.5 But production still falls far ple is the New Rice for Africa (NERICA) varieties developed short of demand. As a result, Africa imports up to 40 per- by the Africa Rice Center (AfricaRice2) and partners, which cent of its rice consumption. -
Evaluation of Japonica Rice (Oryza Sativa L.) Varieties and Their Improvement in Terms of Stability, Yield and Cooking Quality by Pure-Line Selection in Thailand
ESEARCH ARTICLE R ScienceAsia 46 (2020): 157–168 doi: 10.2306/scienceasia1513-1874.2020.029 Evaluation of japonica rice (Oryza sativa L.) varieties and their improvement in terms of stability, yield and cooking quality by pure-line selection in Thailand Pawat Nakwilaia, Sulaiman Cheabuc, Possawat Narumona, Chatree Saensukb, Siwaret Arikita,b, a,b, Chanate Malumpong ∗ a Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140 Thailand b Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom 73140 Thailand c Faculty of Agriculture, Princess of Naradhiwas University, Narathiwat 96000 Thailand ∗Corresponding author, e-mail: [email protected] Received 3 Aug 2019 Accepted 3 Apr 2020 ABSTRACT: Many companies in Thailand have encouraged farmers, especially those in the northern regions, to cultivate DOA1 and DOA2 japonica rice varieties. Recently, the agronomic traits of DOA1 and DOA2 were altered, affecting yield and cooking quality. Thus, the objectives of this study were to evaluate the agronomic traits and cooking quality of DOA1 and DOA2 and those of exotic japonica varieties in different locations, including the Kamphaeng Saen and Phan districts (WS16). DOA2 was improved by pure-line selection. The results showed that the Phan district was better suited to grow japonica varieties than the Kamphaeng Saen district and that DOA2 produced high grain yields in both locations. Furthermore, DOA2 was selected by the pure-line method in four generations, after which five candidate lines, Tana1 to Tana5, were selected for yield trials. The results of yield trials in three seasons (WS17, DS17/18, WS18) confirmed that Tana1 showed high performance in terms of its agronomic traits and grain yield. -
Networking Banana and Plantain
Networking Banana and Plantain Annual Report 2000 The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI’s mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI’s headquarters is based in Rome, Italy, with offices in another 19 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources -
Integrated Irrigation and Aquaculture in West Africa: Concepts, Practices and Potential
CCOVEROVER [[Converted].aiConverted].ai 33-03-2006-03-2006 12:21:2012:21:20 INTEGRATED IRRIGATION AND AQUACULTURE INWESTAFRICA—Concepts,practicesandpotential ANDAQUACULTURE IRRIGATION INTEGRATED FAO This volume contains background documents and papers presented at the FAO-WARDA Workshop on Integrated Irrigation Aquaculture (IIA) held in Bamako, Mali, from 4 to 7 November 2003, as well as the findings of FAO expert missions on IIA in the West Africa region. The rationale for IIA development lies in its potential to increase productivity of scarce freshwater resources for improved livelihoods and to reduce pressure on natural resources, which is particularly important in the drought-prone countries of West Africa where water scarcity, food security and environmental degradation are priority issues for policy-makers. Irrigated systems, floodplains and inland valley bottoms are identified as C the three main target environments for IIA in West Africa. Many examples M of current practices, constraints and potential for development of IIA are Y provided. The concepts of economic analyses of IIA are reviewed, and an CM overview of regional and international research institutions and networks MY CY and their mandates as they relate to IIA is given. Key factors for successful CMY adoption of IIA – participation of stakeholders and support for local K development, an integrated, multisectoral approach to IIA and improved knowledge management and networking – indicate the way forward and are reflected in a proposal for IIA development in West Africa. INTEGRATED IRRIGATION AND AQUACULTURE IN WEST AFRICA Concepts, practices and potential ISBN 92-5-105491-6 9 7 8 9 2 5 1 0 5 4 9 1 8 TC/M/A0444E/1/3.06/2500 CCover-IIover-II [[Converted].aiConverted].ai 33-03-2006-03-2006 112:22:302:22:30 C M Y CM MY CY CMY K Cover page: FAO photos by A. -
Detection and Transmission of Rice Stunt Virus on Ciherang and Situ Bagendit Varieties
J.Helina HPT etTropika. al. Detection and Transmission of Rice StuntISSN: Virus 1411-7525 169 Vol. 18, No. 2, September 2018 E-ISSN: 2461-0399 Pages: 169–176 DOI : 10.23960/j.hptt.218169-176 DETECTION AND TRANSMISSION OF RICE STUNT VIRUS ON CIHERANG AND SITU BAGENDIT VARIETIES Selvi Helina1, Sri Sulandari1, Sedyo Hartono2, & Andi Trisyono2 1Department of Phytopathology, Faculty of Agriculture, Gadjah Mada University, Indonesia Jl. Flora No. 1 Bulaksumur Sleman Yogyakarta 55281 2Department of Plant Pests and Diseases, Faculty of Agriculture, Gadjah Mada University, Indonesia Jl. Flora No. 1 Bulaksumur Sleman Yogyakarta 55281 E-mail: [email protected] ABSTRACT Detection and Transmission of rice stunt virus on Ciherang and Situ Bagendit Varieties. The explosion of brown planthoppers recently has caused reduction of rice production in Indonesia. Brown planthoppers do not only act as pest, but also transmit Rice grassy stunt virus (RGSV) and Rice ragged stunt virus (RRSV). Detection of the existence of the two viruses in rice plants and vector insects is important to be done to ensure that the virus is infected with the vector. The aim of this research is to detect the existence of virus in varieties of Ciherang and Situ Bagendit as a result of transmission in the laboratory and to find out the ability of brown planthoppers to transmit stunt virus to both of the varieties. This research was compiled using Completely Randomized Design (CRD) with 4 treatments, namely healthy rice plants of Ciherang and Situ Bagendit varieties, Ciherang and Situ Bagendit varieties which were infested by brown planthoppers each with 5 repetitions. -
Descriptors for Baobab (Adansonia Digitata L.)
afrika focus — Volume 28, Nr. 1, 2015 — pp. 125-126 Descriptors for Baobab (Adansonia digitata L.) Kehlenbeck K.S. Padulosi, A. Alercia Bioversity International, World Agroforestry Centre Italy, Kenya, 2015 Bioversity International belongs to the so-called CG centre group. The latter, in full the Consultative Group on International Agricultural Research (though no longer known under their full name), consists of some fifteen research centres that are members of the CGIAR Consortium. Each centre has a global mandate to study, improve and promote (sub)tropical crops and animal production. Research is carried out in close collaboration with hundreds of partners, including national and regional research institutes, civil soci- ety organizations, academia, development organizations and the private sector. CGIAR´s collaborative research is dedicated to reducing rural poverty, increasing food security, improving human health and nutrition, and ensuring the sustainable man- agement of natural resources. The 15 Research Centres generate and disseminate knowledge, technologies, and policies for agricultural development through the CGIAR Research Programs. The CGIAR Fund provides reliable and predictable multi-year funding to enable research planning over the long term, resource allocation based on agreed priorities, and the timely and predictable disbursement of funds. A multi-donor trust fund finances research carried out by the Centres through the CGIAR Research Programs. In all, some 10,000 scientists and staff, top-notch research infrastructure and dy- namic networks try to deliver adequate solutions to burning development questions. CGIAR’s collections of genetic resources are the most comprehensive in the world, al- lowing the system’s scientists to deliver on expectations, within their mandate. -
Comparison of Aroma Active and Sulfur Volatiles in Three Fragrant Rice Cultivars Using GC–Olfactometry and GC–PFPD ⇑ Kanjana Mahattanatawee A, , Russell L
Food Chemistry 154 (2014) 1–6 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD ⇑ Kanjana Mahattanatawee a, , Russell L. Rouseff b a Department of Food Technology, Faculty of Science, Siam University, 38 Petchkasem Road, Phasi-Charoen, Bangkok 10160, Thailand b Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA article info abstract Article history: Aroma volatiles from three cooked fragrant rice types (Jasmine, Basmati and Jasmati) were characterised Received 13 October 2013 and identified using SPME GC–O, GC–PFPD and confirmed using GC–MS. A total of 26, 23, and 22 aroma Received in revised form 21 December 2013 active volatiles were observed in Jasmine, Basmati and Jasmati cooked rice samples. 2-Acetyl-1-pyrroline Accepted 30 December 2013 was aroma active in all three rice types, but the sulphur-based, cooked rice character impact volatile, Available online 8 January 2014 2-acetyl-2-thiazoline was aroma active only in Jasmine rice. Five additional sulphur volatiles were found to have aroma activity: dimethyl sulphide, 3-methyl-2-butene-1-thiol, 2-methyl-3-furanthiol, dimethyl Keywords: trisulphide, and methional. Other newly-reported aroma active rice volatiles were geranyl acetate, PCA b-damascone, b-damascenone, and A-ionone, contributing nutty, sweet floral attributes to the aroma of Cooked rice Headspace SPME cooked aromatic rice. The first two principal components from the principal component analysis of sulphur volatiles explained 60% of the variance. -
Effective Targeting of Research for Development
CGIAR Rice C a en c t ri e f r A More effective targeting of C e e n u t q r i e r d f u l’A riz pour research for development Afr caR ce Africa Rice Center (AfricaRice) – Annual Report 2017 AfricaRice Headquarters, Côte d’Ivoire © Copyright Africa Rice Center (AfricaRice) 2018 01 BP 4029, Abidjan, Côte d’Ivoire AfricaRice encourages fair use of this material. Proper Telephone: (225) 22 48 09 10 citation is required. The designation used in the presentation Fax: (225) 22 44 26 29 of materials in this publication do not imply the expression Email: [email protected] of any opinion whatsoever by the Africa Rice Center (AfricaRice) concerning the legal status of any country, AfricaRice M’bé Research Station territory, city or area, or of its authorities, or concerning 01 BP 2551, Bouaké, Côte d’Ivoire the delimitation of its frontiers and boundaries. Telephone: (225) 22 48 09 20 Citation: Fax: (225) 31 63 25 78 Africa Rice Center (AfricaRice). 2018. Africa Rice Center Email: [email protected] (AfricaRice) Annual Report 2017: More effective targeting of research for development. Abidjan, Côte d’Ivoire: 40 pp. AfricaRice Regional Station for the Sahel, Senegal BP 96, Saint-Louis, Senegal ISBN: Telephone: (221) 33 962 64 41, 33 962 64 93 Print 978-92-9113-394-9 Fax: (221) 33 962 64 91 PDF 978-92-9113-395-6 Email: [email protected] Writing and editing: AfricaRice Nigeria Country Office c/o IITA, PMB 5320, Ibadan, Oyo State, Nigeria Green Ink (www.greenink.co.uk) Telephone: (234) 80 55 05 59 51, 80 34 03 52 81 Fax: (44) 20 87 11 37 86 Photo credits: Email: [email protected] Romaric Biaou, page 22; Mirian Hendriks, page 29. -
Understanding G × E Interaction of Elite Basmati Rice (Oryza Sativa L.) Genotypes Under North Indian Conditions Using Stability Models - 5863
Jain et al.: Understanding G × E interaction of elite basmati rice (Oryza sativa L.) genotypes under north Indian conditions using stability models - 5863 - UNDERSTANDING G × E INTERACTION OF ELITE BASMATI RICE (ORYZA SATIVA L.) GENOTYPES UNDER NORTH INDIAN CONDITIONS USING STABILITY MODELS JAIN, B. T.1 – SARIAL, A. K.2 – KAUSHIK, P.3* 1Department of Genetics & Plant Breeding, CCS Haryana Agriculture University, Hisar, Haryana 125001, India 2CSK Himachal Pradesh Krishi Vishvavidyala, Palampur, Himachal Pradesh 176062, India 3Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia 46022, Spain *Corresponding author e-mail: [email protected], [email protected]; phone: +34-96-387-7000 (Received 14th Jan 2019; accepted 6th Mar 2019) Abstract. Information regarding the stability of genotypes is critical in expanding the adaptability of released genotypes. But, this information regarding the basmati (scented) rice genotypes cultivated under north Indian conditions are not well known. Therefore, here we have evaluated the twenty-two basmati rice genotypes for stability, based on important traits, and different production system. Genotypes were evaluated for two consecutive Kharif seasons under open field conditions in a randomized complete block design (RCBD). The genotypes were evaluated under four production systems namely, transplanted rice (TPR), system of rice intensification (SRI), direct seeded rice (DSR) in both settings, i.e. wet DSR (W) and dry DSR (D). The stability of genotypes was determined via Eberhart and Russell model, additive main effects and multiplicative interaction (AMMI), and genotype × environment interaction (GGE) biplot model. The stability and adaptability studied using Eberhart and Russell model, AMMI and GGE biplot identified Basmati-370 as the most stable genotype for biological weight; Pusa RH-10 for filled spikelet; CSR-30 for spikelet Number; and Traori Basmati for test grain weight. -
Rice Hoja Blanca: a Complex Plant–Virus–Vector Pathosystem F.J
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2010 5, No. 043 Review Rice hoja blanca: a complex plant–virus–vector pathosystem F.J. Morales* and P.R. Jennings Address: International Centre for Tropical Agriculture, AA 6713, Cali, Colombia. *Correspondence: F.J. Morales. E-mail: [email protected] Received: 30 April 2010 Accepted: 24 June 2010 doi: 10.1079/PAVSNNR20105043 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Rice hoja blanca (RHB; white leaf) devastated rice (Oryza sativa) plantings in tropical America for half a century, before scientists could either identify its causal agent or understand the nature of its cyclical epidemics. The association of the planthopper Tagosodes orizicolus with RHB outbreaks, 20 years after its emergence in South America, suggested the existence of a viral pathogen. However, T. orizicolus could also cause severe direct feeding damage (hopperburn) to rice in the absence of hoja blanca, and breeders promptly realized that the genetic basis of resistance to these problems was different. Furthermore, it was observed that the causal agent of RHB could only be trans- mitted by a relatively low proportion of the individuals in any given population of T. orizicolus and that the pathogen was transovarially transmitted to the progeny of the planthopper vectors, affecting their normal biology. An international rice germplasm screening effort was initiated in the late 1950s to identify sources of resistance against RHB and the direct feeding damage caused by T.