Network Rail Infrastructure Limited – Annual Return 2011 3 MB
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ITS 500 Series the New Alsaldobreda/Firema Meneghino Train for Milan
Connectors ITS 500 ITS 500 Series Reverse Bayonet Single Pole Power Connector Introduction New York MTA The new AlsaldoBreda/Firema Glenair is proud to supply connectors and Meneghino train for Milan, Italy interconnect systems for various programs for the The Meneghino is a new six-car dual- New York MTA. voltage train for the Metropolitana Milanese Glenair interconnects are employed on critical (Milan underground). It belongs to the “MNG” Traction Motor System and Intercar Jumper (Metropolitana di Nuova Generazione or Metro applications on the M8 EMU Railcars supplied by New Generation) family.The MNG is designed and Kawasaki for Metro North Railroad. manufactured in cooperation with Ansaldo Breda, a premier Italian rail transport and engineering company. Each train is built with two identical traction units, in the “Rp-M-M” configuration: Each unit includes one trailer coach (Rp) equipped with a driver’s cab, and two intermediate motor coaches (M) without a driver’s cab. C The M8 is an electric multiple unit (EMU) railroad car built by Kawasaki for use on the New Haven Line of the Metro-North Railroad. Photo: office of Dannel Malloy Glenair has also supplied product for numerous applications on the Long Island Railroad / Metro North M9 cars such as Traction Motor Systems, Intercar Jumpers, Lighting, Communication, HVAC, Converters, as well as others. The new AlsaldoBreda/Firema Meneghino train for Milan, Italy The electrically - controlled passenger doors (8 on each coach) grant a high reliability standard and very low maintenance. The train is equipped with a highly advanced Passengers’ Audio/ Video Information System. With this system, passengers receive informational messages and video The EMU M9 railcars will replace the M-3 fleet and regarding train service, broadcast directly to LCD expand the electric fleet for East Side Access. -
Irchel Tram Depot – Headshunt Redevelopment
Zurich Public Transport, Infrastructure Irchel Tram Depot – Headshunt Redevelopment 27.09.2021 Page 1 Irchel Tram Depot – Headshunt Redevelopment Client Facts Zurich Public Transport, Infrastructure Period 2010 - 2013 Project Country Switzerland Redeveloped headshunt enables Zurich Public Transport (VBZ) to operate its Irchel Tram Depot more efficiently. Difficult and time-consuming shunting tasks are now a thing of the past. Trams with low-floor cars in the middle and trailers (also referred to as “sedan-pony trams”) have been in operation on Line 7 since November 2010. These trams are now to be maintained and housed at the Irchel Tram Depot. The existing headshunt was not long enough to permit the expeditious handling of trams longer than 43 metres. Handling the 45-metre sedan-pony trams on the existing headshunt involved disconnecting the tram cars, shunting them separately into the depot and then reconnecting them – an overly complicated, time consuming and operationally impractical process. In response, Zurich Public Transport (VBZ) initiated an internal process of identifying alternative solutions. These solutions were also expected to take account of the new tram specifications that will apply following Zurich Public Transport’s purchase of a new tram generation (NTG). In October 2010, Zurich Public Transport commissioned EBP to conduct an independent and comprehensive review of the various development proposals it had worked out. The review was also to include an examination of the associated costs and relative merits of the proposed construction measures and their impact on the depot’s immediate vicinity and on railway operation in general. Working in the capacity of a general planner, EBP evaluated the various proposals and used the results of its review to outline the steps that would need to be taken to gain approval for and execute the redevelopment project. -
Transportation on the Minneapolis Riverfront
RAPIDS, REINS, RAILS: TRANSPORTATION ON THE MINNEAPOLIS RIVERFRONT Mississippi River near Stone Arch Bridge, July 1, 1925 Minnesota Historical Society Collections Prepared by Prepared for The Saint Anthony Falls Marjorie Pearson, Ph.D. Heritage Board Principal Investigator Minnesota Historical Society Penny A. Petersen 704 South Second Street Researcher Minneapolis, Minnesota 55401 Hess, Roise and Company 100 North First Street Minneapolis, Minnesota 55401 May 2009 612-338-1987 Table of Contents PROJECT BACKGROUND AND METHODOLOGY ................................................................................. 1 RAPID, REINS, RAILS: A SUMMARY OF RIVERFRONT TRANSPORTATION ......................................... 3 THE RAPIDS: WATER TRANSPORTATION BY SAINT ANTHONY FALLS .............................................. 8 THE REINS: ANIMAL-POWERED TRANSPORTATION BY SAINT ANTHONY FALLS ............................ 25 THE RAILS: RAILROADS BY SAINT ANTHONY FALLS ..................................................................... 42 The Early Period of Railroads—1850 to 1880 ......................................................................... 42 The First Railroad: the Saint Paul and Pacific ...................................................................... 44 Minnesota Central, later the Chicago, Milwaukee and Saint Paul Railroad (CM and StP), also called The Milwaukee Road .......................................................................................... 55 Minneapolis and Saint Louis Railway ................................................................................. -
M7 Electric Multiple Unitанаnew York
Electric Multiple Unit -M- 7 POWERCAR WITH TOILET ---10' 6' B END FEND I 3,200 mi , -: -" 0 C==- ~=0 :- CJCJ ~~[] CJCJCJCJCJCJ [] I D b 01 " ~) -1::1 1211-1/2 t~J ~~W ~~IL...I ~w -A'-'1~~~- I ~~ 309~mmt ~ 1 I~ 11 m 2205~16~m-! 591..1.6" mm --I I 1- -- 59°6" ° 4°8-1/2. , ~ 16,~:,60~m ~-- -;cl 10435mm ~ .-1 25.908 mm F END GENERAL DATA wheelchair locations 2 type of vehicle electric multiple unit passenger per car (seated) under design operator Metropolitan Transportation Authority passengers per car (standing) crush load under design Long Island Railroad order date May 1999 TECHNICAL CHARACTERISTICS quantity 113 power cars without toilet .power fed by third rail: 400-900 Vdc 113 power cars with toilet .auxiliary voltages: 230 Vac / 3 ph / 60 Hz train consist up to 14 cars 72 Vdc .AC traction motor: 265 hp (200 kW) DIMENSIONS AND WEIGHf Metric Imperial .dynamic and pneumatic (tread & disc) braking system length over coupler 25,908 mm 85'0" .coil spring primary suspension width over side sheets 3,200 mm 10'6" .air-bag secondary suspension rail to roof height 3,950 mm 12' II Y;" .stainless steel carbody rail to top of floor height I ,295 mm 51" .fabricated steel frame trucks rail to top of height 4,039 mm 13' 3" .automatic parking brake doorway width 1,270 mm 50" .forced-air ventilation doorway height 1,981 mm 6'6" .air-conditioning capacity of 18 tons floor to high ceiling height 2,261 mm 89" .electric strip heaters floor to low ceiling height 2,007 mm 79" .ADA compliant toilet room (8 car) wheel diameter 914 mm 36" .vacuum sewage system -
Right of Passage
Right of Passage: Reducing Barriers to the Use of Public Transportation in the MTA Region Joshua L. Schank Transportation Planner April 2001 Permanent Citizens Advisory Committee to the MTA 347 Madison Avenue, New York, NY 10017 (212) 878-7087 · www.pcac.org ã PCAC 2001 Acknowledgements The author wishes to thank the following people: Beverly Dolinsky and Mike Doyle of the PCAC staff, who provided extensive direction, input, and much needed help in researching this paper. They also helped to read and re-read several drafts, helped me to flush out arguments, and contributed in countless other ways to the final product. Stephen Dobrow of the New York City Transit Riders Council for his ideas and editorial assistance. Kate Schmidt, formerly of the PCAC staff, for some preliminary research for this paper. Barbara Spencer of New York City Transit, Christopher Boylan of the MTA, Brian Coons of Metro-North, and Yannis Takos of the Long Island Rail Road for their aid in providing data and information. The Permanent Citizens Advisory Committee and its component Councils–the Metro-North Railroad Commuter Council, the Long Island Rail Road Commuters Council, and the New York City Transit Riders Council–are the legislatively mandated representatives of the ridership of MTA bus, subway, and commuter-rail services. Our 38 volunteer members are regular users of the MTA system and are appointed by the Governor upon the recommendation of County officials and, within New York City, of the Mayor, Public Advocate, and Borough Presidents. For more information on the PCAC and Councils, please visit our website: www.pcac.org. -
Track Geometry
Track Geometry Track Geometry Cost effective track maintenance and operational safety requires accurate and reliable track geometry data. The Balfour Beatty Rail Digital Track Geometry System is a combined hardware and software application that derives track geometry parameters compliant with EN 13848-1:2003 and is an enhanced version of the original BR and LU systems, with a rationalised transducer layout using modern sensor technology. The system can be installed on a variety of vehicles, from dedicated test trains, service vehicles and road rail plant. Unlike some systems, our solution is designed such that voids and other vertical track defects are identified through the wheel/rail interface when the track is fully loaded. The compromise of taking measurements away from the wheel could produce under-measurement of voided track with an error that increases the further the measurement point is away from the influences of the wheel. The system uses bogie mounted non-contacting inertial sensors complemented by an optional image based sub-system, to measure rail vertical and lateral displacement. The system is designed to operate over a speed range of approx. 5 to 160 mph (8-250km/h). However, safety critical parameters such as gauge and twist will function at zero. Geometry parameters are calculated in real time and during operation real time exception and statistical reports are generated. Principal measurements consist of: • Twist • Dynamic Cross-level • Cant and Cant deficiency • Vertical Profile • Alignment • Curvature • Gauge • Dipped Joints • Cyclic Top Vehicle Ride Measurement As an accredited testing organisation we are well versed in capturing and processing acceleration measurements to national/international standards in order to obtain Ride Quality information in accordance with, for example ENV 12299 “Railway applications – Ride comfort for passengers – Measurement and Evaluation”. -
Rail Deck Park Engineering and Costing Study
Contents EXECUTIVE SUMMARY ............................................................................................................. 1 1.0 BACKGROUND ............................................................................................................... 8 1.1 Purpose ..................................................................................................................... 8 1.2 Alignment with Other Initiatives ................................................................................. 8 1.3 Project Team ............................................................................................................. 9 City of Toronto.................................................................................................. 9 Build Toronto.................................................................................................... 9 WSP Canada Group Limited............................................................................ 9 2.0 STUDY METHODOLOGY.............................................................................................. 10 2.1 Study Area............................................................................................................... 10 2.2 Data Gathering ........................................................................................................ 10 3.0 EXISTING CONDITIONS............................................................................................... 12 3.1 Topography & Landforms....................................................................................... -
CSX Transportation (CSX) Lynchburg, VA April 30, 2014
Federal Railroad Administration Office of Railroad Safety Accident and Analysis Branch Accident Investigation Report HQ-2014-4 CSX Transportation (CSX) Lynchburg, VA April 30, 2014 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report, including this one, made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. U.S. Department of Transportation FRA File #HQ-2014-4 Federal Railroad Administration FRA FACTUAL RAILROAD ACCIDENT REPORT TRAIN SUMMARY 1. Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. CSX Transportation CSX 000129247 GENERAL INFORMATION 1. Name of Railroad or Other Entity Responsible for Track Maintenance 1a. Alphabetic Code 1b. Railroad Accident/Incident No. CSX Transportation CSX 000129247 2. U.S. DOT Grade Crossing Identification Number 3. Date of Accident/Incident 4. Time of Accident/Incident 4/30/2014 1:54 PM 5. Type of Accident/Incident Derailment 6. Cars Carrying 7. HAZMAT Cars 8. Cars Releasing 9. People 10. Subdivision HAZMAT 104 Damaged/Derailed 17 HAZMAT 1 Evacuated 400 Huntington East 11. Nearest City/Town 12. Milepost (to nearest tenth) 13. State Abbr. 14. County Lynchburg VA LYNCHBURG 15. Temperature (F) 16. Visibility 17. Weather 18. Type of Track 53 ̊ F Day Rain Main 19. Track Name/Number 20. FRA Track Class 21. Annual Track Density 22. Time Table Direction (gross tons in millions) No. 2 Freight Trains-25, Passenger Trains-30 East 50 U.S. -
Rtd Light Rail Design Criteria
RTD LIGHT RAIL DESIGN CRITERIA Regional Transportation District November 2005 Prepared by the Engineering Division of the Regional Transportation District Regional Transportation District 1600 Blake Street Denver, Colorado 80202-1399 303.628.9000 RTD-Denver.com November 28, 2005 The RTD Light Rail Design Criteria Manual has been developed as a set of general guidelines as well as providing specific criteria to be employed in the preparation and implementation of the planning, design and construction of new light rail corridors and the extension of existing corridors. This 2005 issue of the RTD Light Rail Design Criteria Manual was developed to remain in compliance with accepted practices with regard to safety and compatibility with RTD's existing system and the intended future systems that will be constructed by RTD. The manual reflects the most current accepted practices and applicable codes in use by the industry. The intent of this manual is to establish general criteria to be used in the planning and design process. However, deviations from these accepted criteria may be required in specific instances. Any such deviations from these accepted criteria must be approved by the RTD's Executive Safety & Security Committee. Coordination with local agencies and jurisdictions is still required for the determination and approval for fire protection, life safety, and security measures that will be implemented as part of the planning and design of the light rail system. Conflicting information or directives between the criteria set forth in this manual shall be brought to the attention of RTD and will be addressed and resolved between RTD and the local agencies andlor jurisdictions. -
Rail for All Report
RAIL FOR ALL Delivering a modern, zero-carbon rail network in Scotland Green GroupofMSPs Policy Briefing SUMMARY Photo: Times, CC BY-SA 2.5 BY-SA Times, CC Photo: The Scottish Greens are proposing the Rail for All investment programme: a 20 year, £22bn investment in Scotland’s railways to build a modern, zero-carbon network that is affordable and accessible to all and that makes rail the natural choice for commuters, business and leisure travellers. This investment should be a central component of Scotland’s green recovery from Covid, creating thousands of jobs whilst delivering infrastructure that is essential to tackle the climate emergency, that supports our long-term economic prosperity, and that will be enjoyed by generations to come. CONTENTS CHAPTER PAGE 1 Creating the delivery infrastructure 4 i. Steamline decision-making processes and rebalance 4 them in favour of rail ii. Create one publicly-owned operator 4 iii. Make a strategic decision to deliver a modern, 5 zero-carbon rail network and align behind this iv. Establish a task force to plan and steer the expansion 5 and improvement of the rail network 2 Inter-city services 6 3 Regional services 9 4 Rural routes and rolling stock replacement 10 5 TramTrains for commuters and urban connectivity 12 6 New passenger stations 13 7 Reopening passenger services on freight lines 14 8 Shifting freight on to rail 15 9 Zero-carbon rail 16 10 Rail for All costs 17 11 A green recovery from Covid 18 This briefing is based on the report Rail for All – developing a vision for railway investment in Scotland by Deltix Transport Consulting that was prepared for John Finnie MSP. -
Tay Estuary Rail Study Working Paper B Constraints and Development of Options
` Tay Estuary Rail Study Working Paper B Constraints and Development of Options May 2003 BTR3726 28/05/2003 Babtie Group 95 Bothwell Street, Glasgow G2 7HX Tel 0141 204 2511 Fax 0141 226 3109 Tay Estuary Rail Study Working Paper B – Constraints and Development of Options Contents Page 1.0 Introduction 3 2.0 Existing Services and Constraints 3 3.0 Service Options 7 3.1 The Options 7 3.2 The Service frequency 7 4.0 Assessment of Options 11 4.1 The East West Axis 11 4.1.1 Option A: Dundee – Carnoustie 11 4.1.2 Option B: Dundee – Arbroath 14 4.1.3 Option C: Dundee – Montrose 17 4.1.4 Option D: Montrose – Brechin 21 4.1.5 Option E: Perth to Carnoustie and Arbroath 22 4.1.6 Option F: Perth – Montrose 25 4.1.7 Dundee West Service Extensions 27 4.2 The North South Axis 29 4.2.1 Option G: Arbroath – Ladybank 29 4.2.2 Option H: Perth – Dundee – Ladybank 31 4.2.3 Option I: Dundee West – Leuchars 32 4.2.4 Option J: Leuchars - St Andrews 34 5.0 Station Appraisals 36 5.1 General Discussion 36 5.2 The East West Axis Stations 37 5.2.1 Montrose 37 5.2.2 Arbroath 41 5.2.3 Carnoustie 45 5.2.4 Golf Street 48 5.2.5 Barry Links 50 5.2.6 Monifieth 52 5.2.7 Balmossie 55 5.2.8 Broughty Ferry 57 5.2.9 Dundee 59 5.2.10 Dundee West 63 5.2.11 Invergowrie 65 5.2.12 Perth 67 5.3 The North South Axis Stations 70 5.3.1 Leuchars 70 5.3.2 Cupar 73 5.3.3 Springfield 76 5.3.4 Ladybank 79 6.0 Summary of Options and Costs 82 Appendices Appendix A Option Base Timetable Appendix B Station Audit Proforma Appendix C Dundee West – Proposed Station Location \\Douglas\Work\Projects\4900s\4976\Outputs\Reports\Final\WP B (Constraints and Option Development) v5.doc Page 1 Tay Estuary Rail Study Working Paper B – Constraints and Development of Options Copyright Babtie Group Limited. -
Building Better Transport
Building Better Transport CEC02083844_0001 Building Better Transport Ministerial Foreword When I was appointed Tr ansport Minister last spring, Scotland's Transport: Delivering Improvements was not long published. That document identified key priorities for transport that have underpinned our work over the last year. It also promised that we would issue a report on progress. We have taken huge steps forward since then. The key to progress was our decision last year to allocate unprecedented sums to transport over the next three years. Spending on transport will rise by over 50% over three years, with almost £1 billion per annum being spent by 2006. Spending on public transport - which is now top of our priorities - will rise by over 70% in three years. That decision made an enormous impact. There is now money to fund major new infrastructure projects. The sense of momentum is building. People are beginning to believe. Transport improvements that once seemed a pipe dream stand a genuine chance of becoming reality. The new communications links that businesses have been crying out for are just around the corner, and the economy will thrive on them. Resources are not unlimited, but we can be certain that the transformation of Scotland's transport infrastructure will be well under way by the end of the decade. We have been criticised in the past for not committing the funds needed to enable major projects to proceed. That has now changed. All schemes will still have to continue to demonstrate value for money and stand up to rigorous economic and environmental scrutiny. But the security of a £1 billion per annum budget has enabled us over the year to make firm funding commitments, including the MS and M80 motorway upgrades in west central Scotland; the reinstatement of the Airdrie-Bathgate railway line; a new bypass, the Western Peripheral Route, for Aberdeen; and has allowed us to make further progress with rail links to Glasgow and Edinburgh airports.