The Mesozoic–Cenozoic Tectonic Evolution of the New Siberian Islands, NE Russia

Total Page:16

File Type:pdf, Size:1020Kb

The Mesozoic–Cenozoic Tectonic Evolution of the New Siberian Islands, NE Russia Geol. Mag. 152 (3), 2015, pp. 480–491. c Cambridge University Press 2014 480 doi:10.1017/S0016756814000326 The Mesozoic–Cenozoic tectonic evolution of the New Siberian Islands, NE Russia ∗ CHRISTIAN BRANDES †, KARSTEN PIEPJOHN‡, DIETER FRANKE‡, NIKOLAY SOBOLEV§ & CHRISTOPH GAEDICKE‡ ∗ Institut für Geologie, Leibniz Universität Hannover, Callinstraße, 30167 Hannover, Germany ‡Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany §A.P. Karpinsky Russian Geological Research Institute (VSEGEI), Sredny av. 74, 199106 Saint-Petersburg, Russia (Received 27 December 2013; accepted 4 June 2014; first published online 25 September 2014) Abstract – On the New Siberian Islands the rocks of the east Russian Arctic shelf are exposed and allow an assessment of the structural evolution of the region. Tectonic fabrics provide evidence of three palaeo-shortening directions (NE–SW, WNW–ESE and NNW–SSE to NNE–SSW) and one set of palaeo-extension directions revealed a NE–SW to NNE–SSW direction. The contractional deformation is most likely the expression of the Cretaceous formation of the South Anyui fold–thrust belt. The NE–SW shortening is the most prominent tectonic phase in the study area. The WNW–ESE and NNW–SSE to NNE–SSW-oriented palaeo-shortening directions are also most likely related to fold belt formation; the latter might also have resulted from a bend in the suture zone. The younger Cenozoic NE–SW to NNE–SSW extensional direction is interpreted as a consequence of rifting in the Laptev Sea. Keywords: New Siberian Islands, De Long Islands, South Anyui suture zone, fold–thrust belt. 1. Introduction slip data. Such datasets deliver important information for understanding the regional geodynamic evolution In the last decades, several plate tectonic models have of the study area. In addition, understanding the ori- been developed to explain the evolution of the Arc- entation of faults and fractures is also important for tic region (e.g. Jones, 1980; Rowley & Lottes, 1988; hydrocarbon exploration (Gohram et al. 1979;Narr Miller et al. 2006; Shepard, Müller & Seton, 2013; 1991; Hennings, Olson & Thompson, 2000; Zahm & Vernikovsky et al. 2013a), but there are still many Hennings, 2009) and drilling campaigns (Dusseault open questions. Little is known so far about the struc- et al. 2004). The Laptev and East Siberian seas are tural evolution of the New Siberian Islands, which are regarded as an important hydrocarbon province (e.g. located in a key position on the east Russian Arctic Cramer & Franke, 2005; Khain, Polyakova & Filtova, shelf between the Laptev and the East Siberian seas 2009). Knowledge about the palaeo-shortening and (Fig. 1). This area is the western margin of the Alaska– palaeo-extension directions is crucial for exploration Chukotka microplate (e.g. Miller et al. 2006) and its campaigns, because the orientation of natural fractures structural evolution is important for understanding the and faults in sedimentary basins are systematically re- Mesozoic–Cenozoic tectonic evolution of the Arctic re- lated to the direction of the regional palaeostress field gion (Vernikovsky et al. 2013b). Studies have focused (Engelder & Geiser, 1980). Nevertheless, perturbations on the tectonics of the Laptev Sea region (Fujita, Cam- can occur that modify the local stress field (Homberg bray & Velbel, 1990; Drachev et al. 1998). Current et al. 1997). Faults and fractures also have an influence models largely depend on offshore reflection seismics on the subsurface fluid flow properties as they are dis- (Drachev et al. 1998; Franke, Hinz & Oncken, 2001; continuities in the rock mass that can affect the vertical Franke & Hinz, 2005, 2009). The onshore structural and lateral flow (Beaudoin et al. 2011, 2013). evolution of the New Siberian Islands has only been The aims of this study were to: (1) present an analysis analysed at selected locations (e.g. Kos’ko & Trufanov, of the outcrop-scale brittle fabrics of the New Siberian 2002; Kuzmichev & Pease, 2007; Kuzmichev, 2009) Islands; (2) derive the directions of tectonic deform- and knowledge is limited. There are no recent datasets ation of the eastern Laptev Sea and the western East from the De Long Islands available. To close this gap, Siberian Sea; and (3) connect the palaeo-shortening we present results of an onshore field-based structural and palaeo-extension directions with the geodynamic analysis carried out during the Circum-Arctic Struc- evolution of the NE Russian Arctic region. tural Events (CASE) 13 expedition in 2011, covering large parts of the New Siberian Islands including the De Long Islands. 2. Geological setting and previous work The palaeo-shortening and palaeo-extension direc- tions were derived from the trend of fold-axes and fault- The New Siberian Islands are located between the Laptev Sea and the East Siberian Sea (Fig. 1). They can †Author for correspondence: [email protected] be divided into three groups: the Lyakhov Islands in the Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 14 Nov 2017 at 13:16:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756814000326 New Siberian Islands Mesozoic–Cenozoic tectonic evolution 481 De Long Islands 200 km Henrietta N Island Bennett Island Jeannette Island South based on Frank Anjou Islands Belkov Kotel´ny Anyui Island Zhokhov Island Island e et al. (2008)suture Bunge Land zone Vilkitsky Island Faddeyev Island Novaya Sibir South Anyui suture based on Natal´in et al. (1999) New Siberian Islands Laptev Sea Rift Lyakhov zone Stolbovoy Island Island Bol´shoi Lyakhov Island ? South Anyuiuzmichev suture (2009)zone Key based on K Quaternary volcanics Lower Cretaceous volcanics Carboniferous Oligocene to Quaternary Jurassic/Cretaceous Devonian Upper Eocene Jurassic Silurian Lower and Middle Eocene Triassic Ordovician Cretaceous Permian/Triassic Cambrian Figure 1. Geological map of the study area. Map is based on VSEGEI, Position of the South Anyui suture zone is modified after Natal’in et al. (1999), Franke et al. (2008) and Kuzmichev (2009). Globe is taken from NASA World Wind. south; the Anjou Islands in the centre; and the De Long Belkov Island (Kuzmichev & Pease, 2007) and on the Islands in the northeast (Kos’ko & Trufanov, 2002). structural style of parts of Kotel’ny Island and Novaya The Lyakhov and Anjou Islands represent a fold–thrust Sibir (Kos’ko et al. 1990; Kos’ko & Trufanov, 2002; belt that evolved during Jurassic–Cretaceous time and Kos’ko & Korago, 2009). These studies were limited in is interpreted to be continuous from NW Alaska over their regional extent however, and there are no recent northern Chukotka to the Laptev Sea area (Kos’ko & structural studies available for the De Long Islands. Trufanov, 2002; Bondarenko et al. 2003). The New The most recent work on the New Siberian Islands and Siberian Islands are regarded as a key area to under- the De Long Islands has a focus on palaeomagnetics stand the plate tectonic evolution of the Arctic region and biostratigraphy (Vernikovsky et al. 2013a, b). and the opening of the Amerasian Basin (Vernikovsky Sedimentary rocks of Cambrian–Cenozoic age are et al. 2013a, b). The offshore geology of the region exposed on the New Siberian Islands (Fig. 1). Igneous has been comprehensively analysed over the last 15 rocks are also present to a lesser extent. Ordovician years (Franke et al. 1998, 2008; Drachev et al. 1998; rocks are represented by shallow-water carbonates in Franke, Hinz & Oncken, 2001; Franke, Hinz & Reich- the northern part of Kotel’ny Island and by deepwater ert, 2004; Drachev, 2011). These studies focused on the clastics on Bennett and Henrietta Islands. Belkov Is- geodynamic evolution of the Late Cretaceous – Palaeo- land and the SW part of Kotel’ny Island are dominated gene Laptev Sea Rift, based on 2D-seismic reflection by Devonian–Carboniferous shales (Fig. 1). Triassic– lines. The onshore geology of the New Siberian Is- Cretaceous rocks are exposed in the central part of lands was the subject of different studies dealing with Kotel’ny Island. The Cretaceous rocks are widespread the structural geology of Bol’shoi Lyakhov Island and on the New Siberian Islands and vary from deepwater the nature of the South Anyui suture zone (Kyz’michev clastics (Bol’shoi Lyakhov Island, Stolbovoy Island) to et al. 2006; Kuzmichev, 2009). Additional work was sandstones (central Kotel’ny Island) to sands and soft carried out on the geochemistry of magmatic rocks of coals (Novaya Sibir). Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 14 Nov 2017 at 13:16:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756814000326 482 C. BRANDES AND OTHERS a b fault plane slickenside c d figure 2D 1 m e f normal fault Figure 2. Outcrop photos and stereographic projections from the New Siberian Islands. (a) Strike-slip fault on Stolbovoy Island. The stereographic projection shows the orientation of the fault plane as a great circle and the slickenside striations as dots. (b) Serpentinite with slickenside on Bol’shoi Lyakhov Island. The great circle is the fault plane orientation and the dots indicate the plunge direction of the slickenside striations. (c) Fault-propagation fold on Novaya Sibir. (d) Detail of the fault-propagation fold. The structure was later cut by normal faults. The stereographic projection shows the fault planes as great circles. (e) Normal faults in Palaeogene sediments of northern Bunge Land. (f) Normal faults in Palaeozoic sedimentary rocks on Belkov Island. The stereographic projection shows the fault planes as great circles and the slickenside striations as dots. 3. Methods the basis for fault-slip analyses. We used the software In more than 40 outcrops across the New Siberian Is- FaultKin by R. Allmendinger to analyse the fault-slip lands, the orientations of beds, faults and fractures as data and to calculate P and T axes based on the approach well as slickensides on these surfaces were measured of Marrett & Allmendinger (1990).
Recommended publications
  • Palynological Investigations of Miocene Deposits on the New Siberian Archipelago (U.S.S.R.)
    ARCTIC VOL. 45, NO.3 (SEPTEMBER 1992) P. 285-294 Palynological Investigationsof Miocene Deposits on the New Siberian Archipelago(U.S.S.R.)’ EUGENE v. ZYRYANOV~ (Received 12 February 1990; accepted in revised form23 January 1992) ABSTRACT. New paleobotanical data (mainly palynological) are reported from Miocene beds of the New Siberian Islands. The palynoflora has a number of distinctive features: the presence of typical hypoarctic forms, the high content taxa representing dark coniferous assemblages and the con- siderable proportion of small-leaved forms. Floristic comparison with the paleofloras of the Beaufort Formation in arctic Canada allows interpreta- tion of the evolution of the Arctic as a landscape region during Miocene-Pliocene time. This paper is a preliminary analysis of the mechanisms of arctic florogenesis. The model of an “adaptive landscape” is considered in relation to the active eustaticdrying of polar shelves. Key words: palynology, U.S.S.R., NewSiberian Islands, Miocene,Arctic, florogenesis RÉSUMÉ. On rapporte de nouvelles données paléobotaniques (principalement palynologiques) venant de couches datant du miocène situées dans l’archipel de la Nouvelle-Sibérie. La palynoflore possède un nombre de caractéristiques particulières, parmi lesquelles, la présence de formes hypoarctiques typiques, la grande quantité de taxons représentant des assemblages de conifires sombres, ainsi qu’une collection considérable de formes à petites feuilles. Une comparaison floristique avec les paléoflores de la formationde Beaufort dans l’Arctique canadien permet d’interpréter I’évolution de l’Arctique en tant que zone peuplée d’espèces végetales durant le miocbne et le pliocène. Cet article est une analyse préliminaire des mécanismes de la genèse de la flore arctique.
    [Show full text]
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • New Siberian Islands Archipelago)
    Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Paleozoic Rocks of Northern Chukotka Peninsula, Russian Far East: Implications for the Tectonicsof the Arctic Region
    TECTONICS, VOL. 18, NO. 6, PAGES 977-1003 DECEMBER 1999 Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: Implications for the tectonicsof the Arctic region BorisA. Natal'in,1 Jeffrey M. Amato,2 Jaime Toro, 3,4 and James E. Wright5 Abstract. Paleozoicrocks exposedacross the northernflank of Alaskablock the essentialelement involved in the openingof the the mid-Cretaceousto Late CretaceousKoolen metamorphic Canada basin. domemake up two structurallysuperimposed tectonic units: (1) weaklydeformed Ordovician to Lower Devonianshallow marine 1. Introduction carbonatesof the Chegitununit which formed on a stableshelf and (2) strongly deformed and metamorphosedDevonian to Interestin stratigraphicand tectoniccorrelations between the Lower Carboniferousphyllites, limestones, and an&site tuffs of RussianFar East and Alaska recentlyhas beenrevived as the re- the Tanatapunit. Trace elementgeochemistry, Nd isotopicdata, sult of collaborationbetween North Americanand Russiangeol- and texturalevidence suggest that the Tanataptuffs are differen- ogists.This paperpresents the resultsof one suchstudy from the tiatedcalc-alkaline volcanic rocks possibly derived from a mag- ChegitunRiver valley, Russia,where field work was carriedout matic arc. We interpretthe associatedsedimentary facies as in- to establishthe stratigraphic,structural, and metamorphicrela- dicativeof depositionin a basinal setting,probably a back arc tionshipsin the northernpart of the ChukotkaPeninsula (Figure basin. Orthogneissesin the core of the Koolen dome yielded a
    [Show full text]
  • Evidence for Slab Material Under Greenland and Links to Cretaceous
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Evidence for slab material under Greenland 10.1002/2016GL068424 and links to Cretaceous High Key Points: Arctic magmatism • Mid-mantle seismic and gravity anomaly under Greenland identified G. E. Shephard1, R. G. Trønnes1,2, W. Spakman1,3, I. Panet4, and C. Gaina1 • Jurassic-Cretaceous slab linked to paleo-Arctic ocean closure, prior to 1Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway, 2Natural Amerasia Basin opening 3 • Possible arc-mantle signature in History Museum, University of Oslo, Oslo, Norway, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 4 Cretaceous High Arctic LIP volcanism Institut National de l’Information Géographique et Forestière, Laboratoire LAREG, Université Paris Diderot, Paris, France Supporting Information: Abstract Understanding the evolution of extinct ocean basins through time and space demands the • Supporting Information S1 integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications Correspondence to: of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, G. E. Shephard, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred [email protected] interpretation stipulates that anomalous, fast seismic velocities at 1000–1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs Citation: that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and Shephard, G. E., R. G. Trønnes, geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic W.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    -&? SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 82. NUMBER 6 THE PAST CLIMATE OF THE NORTH POLAR REGION BY EDWARD W. BERRY The Johns Hopkins University (Publication 3061) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION APRIL 9, 1930 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 82, NUMBER 6 THE PAST CLIMATE OF THE NORTH POLAR REGION BY EDWARD W. BERRY The Johns Hopkins University Publication 306i i CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION APRIL 9, 1930 ZU £or& (gafttmore (prees BALTIMORE, MD., U. S. A. THE PAST CLIMATE OF THE NORTH POLAR REGION 1 By EDWARD W. BERRY THE JOHNS HOPKINS UNIVERSITY The plants, coal beds, hairy mammoth and woolly rhinoceros ; the corals, ammonites and the host of other marine organisms, chiefly invertebrate but including ichthyosaurs and other saurians, that have been discovered beneath the snow and ice of boreal lands have always made a most powerful appeal to the imagination of explorers and geologists. We forget entirely the modern whales, reindeer, musk ox, polar bear, and abundant Arctic marine life, and remember only the seemingly great contrast between the present and this subjective past. Nowhere on the earth is there such an apparent contrast between the present and geologic climates as in the polar regions and the mental pictures which have been aroused and the theories by means of which it has been sought to explain the fancied conditions of the past are all, at least in large part, highly imaginary. Occasionally a student like Nathorst (1911) has refused to be carried away by his imagination and has called to mind the mar- velously rich life of the present day Arctic seas, but for the most part those who have speculated on former climates have entirely ignored the results of Arctic oceanography.
    [Show full text]
  • Redacted for Privacy Abstract Approved: John V
    AN ABSTRACT OF THE THESIS OF MIAH ALLAN BEAL for the Doctor of Philosophy (Name) (Degree) in Oceanography presented on August 12.1968 (Major) (Date) Title:Batymety and_Strictuof_thp..4rctic_Ocean Redacted for Privacy Abstract approved: John V. The history of the explordtion of the Central Arctic Ocean is reviewed.It has been only within the last 15 years that any signifi- cant number of depth-sounding data have been collected.The present study uses seven million echo soundings collected by U. S. Navy nuclear submarines along nearly 40, 000 km of track to construct, for the first time, a reasonably complete picture of the physiography of the basin of the Arctic Ocean.The use of nuclear submarines as under-ice survey ships is discussed. The physiography of the entire Arctic basin and of each of the major features in the basin are described, illustrated and named. The dominant ocean floor features are three mountain ranges, generally paralleling each other and the 40°E. 140°W. meridian. From the Pacific- side of the Arctic basin toward the Atlantic, they are: The Alpha Cordillera; The Lomonosov Ridge; andThe Nansen Cordillera. The Alpha Cordillera is the widest of the three mountain ranges. It abuts the continental slopes off the Canadian Archipelago and off Asia across more than550of longitude on each slope.Its minimum width of about 300 km is located midway between North America and Asia.In cross section, the Alpha Cordillera is a broad arch rising about two km, above the floor of the basin.The arch is marked by volcanoes and regions of "high fractured plateau, and by scarps500to 1000 meters high.The small number of data from seismology, heat flow, magnetics and gravity studies are reviewed.The Alpha Cordillera is interpreted to be an inactive mid-ocean ridge which has undergone some subsidence.
    [Show full text]
  • Arctic Report Card 2017
    Arctic Report Card 2017 Arctic Report Card 2017 Arctic shows no sign of returning to reliably frozen region of recent past decades 2017 Headlines 2017 Headlines Video Executive Summary Contacts Arctic shows no sign of returning to reliably frozen Vital Signs region of recent past decades Surface Air Temperature Despite relatively cool summer temperatures, Terrestrial Snow Cover observations in 2017 continue to indicate that the Greenland Ice Sheet Arctic environmental system has reached a 'new Sea Ice normal', characterized by long-term losses in the Sea Surface Temperature extent and thickness of the sea ice cover, the extent Arctic Ocean Primary Productivity and duration of the winter snow cover and the mass of ice in the Greenland Ice Sheet and Arctic glaciers, Tundra Greenness and warming sea surface and permafrost Other Indicators temperatures. Terrestrial Permafrost Groundfish Fisheries in the Highlights Eastern Bering Sea Wildland Fire in High Latitudes • The average surface air temperature for the year ending September 2017 is the 2nd warmest since 1900; however, cooler spring and summer temperatures contributed to a rebound in snow cover in the Eurasian Arctic, slower summer sea ice loss, Frostbites and below-average melt extent for the Greenland ice sheet. Paleoceanographic Perspectives • The sea ice cover continues to be relatively young and thin with older, thicker ice comprising only 21% of the ice cover in on Arctic Ocean Change 2017 compared to 45% in 1985. Collecting Environmental • In August 2017, sea surface temperatures in the Barents and Chukchi seas were up to 4° C warmer than average, Intelligence in the New Arctic contributing to a delay in the autumn freeze-up in these regions.
    [Show full text]
  • NSF 03-048, Arctic Research in the United States, Volume 17, Spring
    This document has been archived. The Russian–American Initiative for Land–Shelf Environments in the Arctic Contributions to Arctic System Science This article was prepared The Russian–American Initiative for Land– projects involving both U.S. and Russian scien- by Lee W. Cooper, Shelf Environments (RAISE) is unique among tists have been initiated. Summaries of many of Department of Ecology research program and project components sup- these projects, both Russian and U.S. based, are and Evolutionary Biolo- ported by the National Science Foundation’s also available at http://arctic.bio.utk.edu/#raise, gy, University of Tennes- see, with assistance from (NSF) Arctic System Science Program (ARCSS). and a summary in written form has also been RAISE principal RAISE project implementation has been explicitly recently published. investigators. international, and the program is the only cooper- Despite this progress, the scale of research ative, bilateral research program supported by supported through RAISE has been limited by the both NSF and its Russian counterpart agency, the complexities of undertaking bilateral research in Russian Foundation for Basic Research (RFBR). the Russian Federation. Changing political reali- The goal of RAISE is to facilitate bilateral ties in both the United States and Russia, eco- (U.S.–Russian) research at the land–sea margin nomic dislocations that have affected the abilities in the Eurasian Arctic, focusing on the scientific of Russian scientists to pursue their vocations, challenges of environmental change in human logistical challenges in the Russian Arctic, and and biological communities and related physical the lack of high-level governmental agreements and chemical systems.
    [Show full text]
  • LATE PLEISTOCENE and EARLY HOLOCENE WINTER AIR TEMPERATURES in KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES of ICE WEDGES Yu.K
    Kriosfera Zemli, 2019, vol. XXIII, No. 2, pp. 12–24 http://www.izdatgeo.ru DOI: 10.21782/EC2541-9994-2019-2(12-24) LATE PLEISTOCENE AND EARLY HOLOCENE WINTER AIR TEMPERATURES IN KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES OF ICE WEDGES Yu.K. Vasil’chuk1,2, V.M. Makeev3, A.A. Maslakov1, N.A. Budantseva1, A.C. Vasil’chuk1 1 Lomonosov Moscow State University, Faculty of Geography and Faculty of Geology, 1, Leninskie Gory, Moscow, 119991, Russia 2 Tyumen State University, 6, Volodarskogo str., Tyumen, 625003, Russia; [email protected] 3Russian State Hydrometeorological University, 98, Malookhtinsky prosp., St. Petersburg, 109017, Russia Late Pleistocene and Holocene winter air temperatures in Kotelny Island, northeastern Russian Arctic, have been reconstructed using oxygen isotope compositions of ice wedges and correlated with evidence of Late Pleistocene and Holocene climate variations inferred from pollen data. The δ18О values range exceeds 6 ‰ in Late Pleistocene ice wedges but is only 1.5 ‰ in the Holocene ones (–30.6 ‰ to –24.0 ‰ against –23.1 ‰ to –21.6 ‰, respectively). The Late Pleistocene mean January air temperatures in Kotelny Island were 10–12 °С lower than the respective present temperature. On the other hand, mean winter temperatures in cold substages during the Karga interstadial were colder than those during the Sartan glacial event. The Late Pleistocene– Holocene climate history included several warm intervals when air temperatures were high enough to maintain the existence of low canopy tree patches in Kotelny Island. Mean January air temperatures in the early Holocene were only 1.0–1.5 °С lower than now.
    [Show full text]
  • Analysis and Identification of the Formation and Geological Setting of Rock Samples from the Delong Islands
    Bachelor Thesis Degree Project in Geology 15 hp Analysis and identification of the formation and geological setting of rock samples from the DeLong Islands Jacob Brotherton Stockholm 2014 Department of Geological Sciences Stockholm University SE-106 91 Stockholm Abstract The De Long Islands are a separate archipelago accommodated as part of the larger group of New Siberian Islands situated between the Laptev Sea in the West and the East Siberian Sea to the East. The De Longs form the North East section of the New Siberian Islands, as seen in figure 1. Henrietta Island, from which the samples studied in this thesis were collected from, is the northernmost Island in the archipelago. Geochemical and thin section analysis was conducted on the samples, to confirm whether previous assumptions that the rocks on Henrietta were derived from an oceanic arc complex were correct and to find out more detail about them. Henrietta island was confirmed to be the location of ocean arc derived igneous rocks as samples display typical arc signatures in multi element plots. The samples collected showed evidence of being derived from a depleted mantle source as confirmed by trace element analysis and multi element plots. The samples were formed in relatively close proximity to the subduction zone of this island arc, these samples were produced over a time span during which the arc continued to mature from initially being relatively immature. Fluids derived from the subducting oceanic crust were also instrumental in the formation of these rocks. Table of Contents Abstract 2 Introduction 3 Geological Background 3 Thin Sections 4 Method 8 Results 9 Discussion 15 Conclusion 16 Bibliography 16 Appendix 18 2 Introduction 1.1 Aim of Study The principle aim of this study is to expand our knowledge on the various igneous and volcanoclastic rocks of the De Long Islands through a variety of methods.
    [Show full text]