Smithsonian Miscellaneous Collections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
North America Other Continents
Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area. -
California Vegetation Map in Support of the DRECP
CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California -
Winter Observations on the Colorado Desert
MAR., 1902. ( THE CONDOR 37 In some respects the Oregon song sparrow is a remarkable form. It is darker than the races north and south of its range, and duplicates in coloring the sooty song sparrow of the Sitkan District. The races along the coast seem thus to alternate light and dark. But whilephea is nearly identical with ru@a in color, it is conspicuously smaller, and the ranges of the two are separated by several hundred miles. The present form occupies a strip along the coast from the northern limit of the redwoods (?) or at least from Rogue River north to Yaquina. The specimens from Crescent City are probably migrants as the breeding birds seem nearer deonensis (tho not precisely typical). The area ofi intergradation between cdeonen- sis and phcza is probably small, extending perhaps from Crescent City to Chetco R. (northern limit of Sequoia sempervivens). Lack of specimens prevents the exact determination of the limits of$hcPa at the north. I am indebted to Mr. Robert Ridgway and to Dr. C. Hart Merriam forthe use of specimens and types in the collection of the National Museum and in that of the Biological Survey. Winter Observations on the Colorado Desert. IT. S. DAGGETT, PASADENA, CAL. ROM Oct. 27 to Nov. 16, 1901, I dead birds floating on its surface, was spent at the American Girl Gold the cyanide tanks, two in number, con- F Mining Co.s‘ camp, located in the taining a strong solution of cyanide of Cargo Murchacho Mts on the Colorado potassium. Birds that essayed to Desert, five and one-half miles north- quench their thirst at this fount top- east of Ogilby, Cal., and some sixteen pled over dead in an instant. -
Palynological Investigations of Miocene Deposits on the New Siberian Archipelago (U.S.S.R.)
ARCTIC VOL. 45, NO.3 (SEPTEMBER 1992) P. 285-294 Palynological Investigationsof Miocene Deposits on the New Siberian Archipelago(U.S.S.R.)’ EUGENE v. ZYRYANOV~ (Received 12 February 1990; accepted in revised form23 January 1992) ABSTRACT. New paleobotanical data (mainly palynological) are reported from Miocene beds of the New Siberian Islands. The palynoflora has a number of distinctive features: the presence of typical hypoarctic forms, the high content taxa representing dark coniferous assemblages and the con- siderable proportion of small-leaved forms. Floristic comparison with the paleofloras of the Beaufort Formation in arctic Canada allows interpreta- tion of the evolution of the Arctic as a landscape region during Miocene-Pliocene time. This paper is a preliminary analysis of the mechanisms of arctic florogenesis. The model of an “adaptive landscape” is considered in relation to the active eustaticdrying of polar shelves. Key words: palynology, U.S.S.R., NewSiberian Islands, Miocene,Arctic, florogenesis RÉSUMÉ. On rapporte de nouvelles données paléobotaniques (principalement palynologiques) venant de couches datant du miocène situées dans l’archipel de la Nouvelle-Sibérie. La palynoflore possède un nombre de caractéristiques particulières, parmi lesquelles, la présence de formes hypoarctiques typiques, la grande quantité de taxons représentant des assemblages de conifires sombres, ainsi qu’une collection considérable de formes à petites feuilles. Une comparaison floristique avec les paléoflores de la formationde Beaufort dans l’Arctique canadien permet d’interpréter I’évolution de l’Arctique en tant que zone peuplée d’espèces végetales durant le miocbne et le pliocène. Cet article est une analyse préliminaire des mécanismes de la genèse de la flore arctique. -
Bibliographic References to Alaskan Fossils, 1839 - May 1979 Compiled by Carol W
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Bibliographic References to Alaskan Fossils, 1839 - May 1979 Compiled by Carol W. Wilson Open-File Report 81-624 1981 This report has not been edited for conformity with Geological Survey editorial standards or stratigraphic nomenclature. CONTENTS Page Introduction ............................... 1 Microfossils ............................... 1 Algae ................................ 4 Conodonta .............................. 4 Diatomae .............................. 5 Foraminifera ............................ 6 Nannofossils (Coccolithophorids) .................. 11 Ostracoda ............................. 12 Palynomorphs (pollen, spores, and Dinoflagellata) .......... 13 Radiolaria ............................. 20 Megafossils ............................... 21 Faunal assemblages ......................... 21 Invertebrata ............................ 38 Annelida ............................ 38 Arthropoda ........................... 38 Crustacea ......................... 38 Insecta (also see Amber) ................. 38 Trilobita ......................... 39 Brachiopoda .......................... 40 Bryozoa ............................ 42 Coelenterata .......................... 43 Anthozoa ......................... 43 Scyphozoa ......................... 47 Echinodermata ......................... 47 Crinoidea ......................... 47 Echinoidea ........................ 47 Graptolithina ......................... 48 Mollusca ............................ 49 Cephalopoda ....................... -
New Siberian Islands Archipelago)
Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins. -
Geography Notes.Pdf
THE GLOBE What is a globe? a small model of the Earth Parts of a globe: equator - the line on the globe halfway between the North Pole and the South Pole poles - the northern-most and southern-most points on the Earth 1. North Pole 2. South Pole hemispheres - half of the earth, divided by the equator (North & South) and the prime meridian (East and West) 1. Northern Hemisphere 2. Southern Hemisphere 3. Eastern Hemisphere 4. Western Hemisphere continents - the largest land areas on Earth 1. North America 2. South America 3. Europe 4. Asia 5. Africa 6. Australia 7. Antarctica oceans - the largest water areas on Earth 1. Atlantic Ocean 2. Pacific Ocean 3. Indian Ocean 4. Arctic Ocean 5. Antarctic Ocean WORLD MAP ** NOTE: Our textbooks call the “Southern Ocean” the “Antarctic Ocean” ** North America The three major countries of North America are: 1. Canada 2. United States 3. Mexico Where Do We Live? We live in the Western & Northern Hemispheres. We live on the continent of North America. The other 2 large countries on this continent are Canada and Mexico. The name of our country is the United States. There are 50 states in it, but when it first became a country, there were only 13 states. The name of our state is New York. Its capital city is Albany. GEOGRAPHY STUDY GUIDE You will need to know: VOCABULARY: equator globe hemisphere continent ocean compass WORLD MAP - be able to label 7 continents and 5 oceans 3 Large Countries of North America 1. United States 2. Canada 3. -
<I>Equisetum Giganteum</I>
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2009 Ecophysiology and Biomechanics of Equisetum Giganteum in South America Chad Eric Husby Florida International University, [email protected] DOI: 10.25148/etd.FI10022522 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Husby, Chad Eric, "Ecophysiology and Biomechanics of Equisetum Giganteum in South America" (2009). FIU Electronic Theses and Dissertations. 200. https://digitalcommons.fiu.edu/etd/200 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida ECOPHYSIOLOGY AND BIOMECHANICS OF EQUISETUM GIGANTEUM IN SOUTH AMERICA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Chad Eric Husby 2009 To: Dean Kenneth Furton choose the name of dean of your college/school College of Arts and Sciences choose the name of your college/school This dissertation, written by Chad Eric Husby, and entitled Ecophysiology and Biomechanics of Equisetum Giganteum in South America, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Bradley C. Bennett _______________________________________ Jack B. Fisher _______________________________________ David W. Lee _______________________________________ Leonel Da Silveira Lobo O'Reilly Sternberg _______________________________________ Steven F. Oberbauer, Major Professor Date of Defense: March 24, 2009 The dissertation of Chad Eric Husby is approved. -
A Newly Discovered Glacial Trough on the East Siberian Continental Margin
Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved. -
Birds of the California Desert
BIRDS OF THE CALIFORNIA DESERT A. Sidney England and William F. Laudenslayer, Jr. i INTRODUCTION i \ 1 The term, "California desert", as used herein, refers to a politically defined region, most of i which is included in the California Desert Conservation Area (CDCA) designated by the Federal Land ; and Management Act of 1976 (FLPMA). Of the 25 million acres in the CDCA, about one-half are i public lands, most of which are managed by the Bureau of Land Management (BLM) according to the "980 P California Desert Conservation Area Plan mandated by FLPMA. The California desert encompasses those portions of the Great Basin Desert (east of the White and lnyo Mountains and A south of the California-Nevada border), the Mojave Desert, and the Colorado Desert which occur " within California; it does not include areas of riparian, aquatic, urban, and agricultural habitats . adjacent to the Colorado River. (Also see chapters on Geology by Norris and Bioclimatology by E3irdsI4 are the most conspicuous vertebrates found in the California deserts. Records exist for at least 425 species (Garrett and Dunn 1981) from 18 orders and 55 families. These counts far exceed those for mammals, reptiles, amphibians and fish, and they are similar to totals for the entire state -- 542 species from 20 orders and 65 families (Laudenslayer and Grenfell 1983). These figures may seem surprisingly similar considering the harsh, arid climates often believed characteristic of I desert environments. However, habiiats found in the California desert range from open water and h marshes at the Salton Sea to pinyon-juniper woodland and limber pinelbristlecone pine forests on a few mountain ranges. -
Seventh Grade Social Studies, Eastern Hemisphere Course Essential Questions (From Phase I Report)
Davison Community Schools ADVISORY CURRICULUM COUNCIL Phase II, April 2012 Seventh Grade Social Studies, Eastern Hemisphere Course Essential Questions (from Phase I report): 1. How does the past link to the present and determine the future? 2. How does the United States fit into the global world and how is the United States impacted by other nations? 3. What is the relationship between people and the Earth? 4. How can information be used to make informed decisions about understanding the world around us? Phase II Curriculum Unit: Geography Essential Questions: Essential Understanding: How do we use maps and other geographic tools Physical features impact where and how people to acquire information about the world? live What methods of inquiry and analysis do we use Geography impacts population patterns to answer geographic questions? Latitude and elevations impact climate zones How do we use themes, connections and spatial Geographers use 5 themes of geography to patterns to describe and study the Earth? describe regions or places on earth How do we compare and describe natural regions? Human and physical characteristics are used to How do we use human characteristics to study study the earth places on the Earth? Map skills are necessary for understanding information for a variety of maps Recognize distortion in a variety of map scale/projections Economic indicators (GDP, Literacy rate …..) are used to evaluate a country Globalization has created a global interdependence among people There are different purposes of world organizations Curriculum Standards G1.1.1 Explain and use a variety of maps, globes, and web based geography technology to study the world, including global, interregional, regional, and local scales. -
North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave
North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave http://www.desertusa.com/desert.html In most modern classifications, the deserts of the United States and northern Mexico are grouped into four distinct categories. These distinctions are made on the basis of floristic composition and distribution -- the species of plants growing in a particular desert region. Plant communities, in turn, are determined by the geologic history of a region, the soil and mineral conditions, the elevation and the patterns of precipitation. Three of these deserts -- the Chihuahuan, the Sonoran and the Mojave -- are called "hot deserts," because of their high temperatures during the long summer and because the evolutionary affinities of their plant life are largely with the subtropical plant communities to the south. The Great Basin Desert is called a "cold desert" because it is generally cooler and its dominant plant life is not subtropical in origin. Chihuahuan Desert: A small area of southeastern New Mexico and extreme western Texas, extending south into a vast area of Mexico. Great Basin Desert: The northern three-quarters of Nevada, western and southern Utah, to the southern third of Idaho and the southeastern corner of Oregon. According to some, it also includes small portions of western Colorado and southwestern Wyoming. Bordered on the south by the Mojave and Sonoran Deserts. Mojave Desert: A portion of southern Nevada, extreme southwestern Utah and of eastern California, north of the Sonoran Desert. Sonoran Desert: A relatively small region of extreme south-central California and most of the southern half of Arizona, east to almost the New Mexico line.