Energy Storage Technology Comparison
Total Page:16
File Type:pdf, Size:1020Kb
Energy Storage Technology Comparison - A knowledge guide to simplify selection of energy storage technology Johanna Gustavsson Reference: http://www.greenenergystorage.eu Bachelor of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2016 SE-100 44 STOCKHOLM Bachelor of Science Thesis EGI-2016 Energy Storage Technology Comparison Johanna Gustavsson Approved Examiner Supervisor Date Viktoria Martin Saman Nimali Gunasekara Commissioner Contact person ii Abstract The purpose of this study has been to increase the understanding of some of the most commonly used energy storage technologies. Also, the work aimed to collect numeric values of a number of common parameters used to analyze energy storage. These numeric values could then be used as basis for a first evaluation of the energy storage technology that is best suited to a given situation. The method was divided into three main phases. The first phase was to gather information on the different technologies and to assess which of the information that was relevant to present in a technical survey called Energy Storage Technology Mapping. This part was done to achieve the goal of increase the insight of different energy storage technologies. The following phase was, on the basis of the numeric values presented in the technical survey, to develop a tool to facilitate the choice of energy storage technologies in different situations. The final phase consisted of a case study that was done to demonstrate the tool’s utility and evaluate its performance. Without comparing the studied technologies with a specific application in mind, the following was stated regarding the four categories of energy storage technologies: · Electrochemical: high efficiency, short storage period · Mechanical: large capacity and power, high initial investment costs and geographically limited · Chemical: very long storage period, low efficiency · Thermal: long lifetime and high efficiency, variable depending on the medium studied From the literature study and the results a number of conclusions were drawn. Among other things, it was possible to conclude that environmental-, social- and ethical aspects should be taken into account as well as the geographical- and geological conditions. It was also possible to conclude that the technologies compared were found at different stages in terms of maturity and commercial use, which was reflected in the ability to find more general numeric values relative to the values linked to a specific application. iii Sammanfattning Syftet med denna studie har varit att öka förståelsen för några av de vanligaste energilagringsteknikerna. Utöver det syftade arbetet till att samla in numeriska värden för ett antal gemensamma parametrar som kan anses relevanta för att analysera energilagring. Dessa numeriska värden kunde sedan användas som underlag vid en första bedömning av vilken energilagringsteknik som är bäst lämpad i olika situationer. Metoden var uppdelad i tre olika huvud faser. Den första fasen bestod i att samla in information om de olika teknikerna samt bedöma vilken av informationen som var lämplig att presentera i en teknisk kartläggning vid namn Energy Storage Technology Mapping. Denna del gjordes för att uppnå målet om ökad förståelse för de olika energilagringsteknikerna. Den efterföljande fasen bestod i att utifrån de numeriska värdena som presenterats i den tekniska kartläggningen ta fram ett redskap för att underlätta valet av energilagringsteknik vid olika situationer. Den sista fasen bestod av en fallstudie som gjordes för att demonstrera verktyget användbarhet samt utvärdera dess prestanda. Utan att jämföra de studerade teknikerna med ett specifikt användningsområde i åtanke kunde följande konstateras gällande de fyra undergrupperna av energilagringstekniker: · Elektrokemiska: hög effektivitet, kort lagringstid · Mekaniska: stor kapacitet och kraft, stora investeringskostnader och geografiskt begränsade · Kemiska: mycket lång lagringstid, låg effektivitet · Termiska: lång livslängd och hög effektivitet, varierande beroende på studerat medium Från litteraturstudien och resultatet kunde ett antal slutsatser dras. Bland annat var det möjligt att dra slutsatsen att miljö-, sociala- och etniska aspekter bör tas i beaktan liksom geografiska- och geologiska förutsättningar. Det gick också att dra slutsatsen att teknikerna som jämfördes befanns sig på olika stadier vad gäller mognad och kommersiellt bruk vilket återspeglades i förmågan att finna mer generella numeriska värden i förhållande till värden kopplade till ett specifikt användningsområde. iv List of content Abstract ........................................................................................................................... iii Sammanfattning ............................................................................................................ iv List of content ................................................................................................................. v List of figures ................................................................................................................. vi List of tables .................................................................................................................. vii Nomenclature ..............................................................................................................viii 1. Introduction................................................................................................................ 1 2. Background ................................................................................................................. 2 2.1 Problem definition .......................................................................................................... 2 2.2 Purpose .............................................................................................................................. 2 2.3 Limitations ........................................................................................................................ 3 3. Methodology ............................................................................................................... 3 4. Energy Storage Technology Mapping .................................................................. 4 4.1 Electrochemical Storage ................................................................................................ 5 4.1.1 Lithium Ion Battery .......................................................................................................................... 5 4.1.2 Sodium Sulfur Battery ..................................................................................................................... 7 4.1.3 Lead Acid Battery .............................................................................................................................. 8 4.1.4 Redox Flow Battery ....................................................................................................................... 10 4.2 Mechanical Storage ....................................................................................................... 11 4.2.1 Compressed Air Energy Storage ............................................................................................. 11 4.2.2 Pumped Hydro Energy Storage ............................................................................................... 13 4.3 Chemical Storage ........................................................................................................... 15 4.3.1 Hydrogen............................................................................................................................................. 15 4.3.2 Methane ............................................................................................................................................... 17 4.4 Thermal Storage ............................................................................................................ 18 4.4.1 Sensible Heat Storage ................................................................................................................... 18 4.4.2 Latent Heat Storage ....................................................................................................................... 19 4.4.3 Thermo-Chemical Energy Storage ......................................................................................... 20 5. Technology Comparison – Results and discussion ........................................ 21 5.1 Comparison of different energy storage technologies ........................................ 21 5.2 Case study: energy storage comparison at three different cases ..................... 24 5.2.1 Case nr 1 – Voltage support....................................................................................................... 24 5.2.2 Case nr 2 - Arbitrage ..................................................................................................................... 25 5.2.3 Case nr 3 – Waste heat utilization .......................................................................................... 25 5.3 Other aspects and overall discussion ...................................................................... 26 6. Conclusions and future work ............................................................................... 28 6.1 Conclusions ..................................................................................................................... 28 6.2 Future work ...................................................................................................................