Software Development for Multipath Route Assignment Technique

Total Page:16

File Type:pdf, Size:1020Kb

Software Development for Multipath Route Assignment Technique SOFTWARE DEVELOPMENT FOR MULTIPATH ROUTE ASSIGNMENT TECHNIQUE A DISSERTATION Submitted in partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in CIVIL ENGINEERING (With Specialization in Computer Aided Design) By RANJEET KUMAR • DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE - 247 667 (INDIA) JUNE, 2006 CANDIDATE'S DECLARATION I hereby declare that the work which is presented in this dissertation titled "SOFTWARE DEVELOPMENT FOR MULTIPATH ROUTE ASSIGNMENT TECHNIQUE " being submitted by me in partial fulfillment of the requirements for the award of Master of Technology in Civil Engineering with the specialization in Computer Aided Design in Civil Engineering at the I.I.T. Roorkee is a authentic work carried by me under supervision of Dr. PRAVEEN KUMAR, Associate Professor in Transportation Engineering, I.I.T. Roorkee. r \4■-tw-c4.- (RANJEET KUMAR) M.Tech. (CAD) Place: Roorkee Department of Civil Engineering Date: 2C IsCia6 Roorkee CERTIFICATE This is to certify that the above declaration made by candidate is correct to the best of my knowledge. (Dr. PRAVEEN KUMAR) Associate Professor Transportation Engineering Place: Roorkee Civil Engineering Department Date: 246416.6 Roorkee ACKNOWLEDGEMENT I wish to express my most sincere appreciation and deep sense of gratitude to Dr. Praveen Kumar, Associate professor in Transportation Engineering, I.I.T. Roorkee, Roorkee for the fruitful discussions, kind help, continued encouragement and invaluable guidance enabling me to bring this dissertation report in the present form. I am extremely grateful to all of my friends, colleagues and well-wishers for their candid help, meaningful suggestions and persistent encouragement given to me from time to time, which went a long way in bringing this work to its present state. &xi ee 14tAiiteOtie (Ranjeet Kumar) ii ABSTRACT The main objective of this dissertation report is to present an overview of the software development of multipath route assignment technique. At first four stage transportation planning is discussed. The last stage is route assignment. Mainly there are four techniques for route assignment i.e. all-or-nothing assignment, capacity restraint technique, multipath-technique, and diversion curves technique. The choice of routes in the development of transportation planning depends upon certain parameters like journey time, distance, cost, comfort, and safety. In this report, I have to discuss about capacity restraint multipath route assignment technique and to develop software for route assignment by this technique. In all the above four techniques, Multipath route assignment technique conforms to the real-life traffic situation and also is accurate. The software developed for route assignment is in visual basic. The software is user friendly and any one can use easily without any difficulty. The software gives output in both text and graphical form. It gives result for both multipath route assignment and capacity restrained multipath route assignment technique. In this software iterations are stopped after establishing equilibrium between traffic entering at origin equal to traffic reach at destination. The main aim of capacity restrained multipath route assignment technique is that the volume at any link not greater than the capacity of that link. For this we have to use a factor equal to the ratio of assigned volume to capacity of that link which is greater than 1. The link is used as redundant link, which has factor greater than 1 and after that new volume is assigned to each link by dividing the assigned volume to factor calculated. Again multipath route assignment technique is applied to calculate the final volume to each link. In this technique, attempts have been done to overcome the drawbacks of "all-or-nothing assignment" and "capacity restraint technique". iii CONTENTS S.N. TOPIC PAGE NO. CERTIFICATE ACKNOWLEDGEMENT ii ABSTRACT iii LIST OF FIGURES vi LIST OF TABLES viii 1. INTRODUCTION 1-3 1.1 GENERAL 1 1.2 NEED OF STUDY 1 1.3 OBJECTIVE OF THE STUDY 2 1.4 THESSIS ORGANIZATION 3 2. LITERATURE REVIEW 4-13 2.1 GENERAL 4 2.2 HISTORICAL CONTEXT 4 2.3 CASE STUDIES CONDUCTED ABROAD 5 2.4 CASE STUDIES CONDUCTED IN INDIA 11 3. TRANSPORTATION PLANNING 14-22 3.1 GENERAL 14 3.2 TRAVEL DEMAND FORECAST 15 3.3 SEQUENTIAL DEMAND FORECASTING MODELS 15 3.3.1 Trip Generation 17 3.3.2 Trip Distribution 19 3.3.3 Modal Choice 20 3.3.4 Route Assignment 21 4. ROUTE ASSIGNMENT 23-38 4.1 GENERAL 23 4.2 GENERAL PRINCIPLE 23 4.3 ROUTE ASSIGNMENT TECHNIQUE 24 iv S.N. TOPIC PAGENO. 4.3.1 All-or-Nothing Assignment 24 4.3.2 Capacity Restraint Technique 26 4.3.3 Multipath Route Assignment 28 4.3.4 Diversion Curves Technique 32 4.4 ELEMENTS OF TRAFFIC ASSIGNMENT 34 4.5 PRACTICAL PROBLEMS IN TRAFFIC ASSIGNMENT 37 5. SOFTWARE DEVELOPMENT 39-56 5.1 GENERAL 39 5.2 SOFTWARE REVIEW 39 5.3 SOFTWARE PRINCIPLE 40 5.4 SOFTWARE DEVELOPMENT PROCEDURE 41 5.5 FLOW CHART 44 5.6 MODULE OF SOFTWARE 49 5.7 FEATURES OF SOFTWARE 56 6. VALIDATION OF THE SOFTWARE 57-96 6.1 GENERAL 57 6.2 DATA FOR VALIDATION 57 6.3 ANALYSIS OF DATA 58 6.3.1 Manual Analysis 58 6.3.2 Computer Analysis 80 6.4 COMPARISION OF RESULTS 96 7. CONCLUSION AND RECOMMENDATION 97 7.1 CONCLUSIONS 97 7.2 RECOMMENDATION 97 REFERENCES 98-100 APPENDIX 101-126 LIST OF FIGURES F.N. TITLES PAGE NO. 3.1 THE SEQUENTIAL DEMAND FORECASTING PROCESS 16 3.2 ESTIMATION OF TRIP DISTRIBUTION 20 3.3 MODAL CHOICE MODEL 21 3.4 FOUR STAGE TRANSPORTATION PLANNING PROCESS 22 5.1 SCREEN PRINT OF GENERAL MODULE 49 5.2 SCREEN PRINT OF INPUT DATA 1 MODULE 50 5.3 SCREEN PRINT OF INPUT DATA 2 MODULE 51 5.4 SCREEN PRINT OF INPUT DATA 3 MODULE 52 5.5 SCREEN PRINT OF INPUT DATA 4 MODULE 53 5.6 SCREEN PRINT OF INPUT DATA 5 MODULE 54 5.7 SCREEN PRINT OF OUTPUT RESULT MODULE 55 6.1 INITIAL ROAD NETWORK AND THEIR DISTANCE 57 6.2 SHORTEST PATH DISTANCE FOR EACH NODE TO DESTINATION 59 6.3 CALCULATED TRAFFIC VOLUMES AT EACH LINK (15 ITERATION) 69 6.4 READJUSTED TRAFFIC VOLUMES AT EACH LINK 70 6.5 ROAD NETWORK AND THEIR DISTANCE 71 6.6 FINAL TRAFFIC VOLUMES AT EACH LINK (15 ITERATION) 79 6.7 SCREEN PRINT OF ENTERING NO.OF NODE AND NO.OF LINK 80 6.8 SCREEN PRINT OF ENTERING COORDINATE OF EACH LINK 81 6.9 SCREEN PRINT OF INPUT OF TRAVEL TIME FOR EACH LINK 82 6.10 SCREEN PRINT OF INPUT OF LINK CAPACITY 83 6.11 SCREEN PRINT OF INPUT OF TRAFFIC FLOW FROM ORIGIN DESTINATION 84 6.12 SCREEN PRINT OF RESULT MODULE 85 6.13 SCREEN PRINT OF OUTPUT OF SHORTEST PATH BY MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 86 vi F.N. TITLES PAGE NO. 6.14 SCREEN PRINT OF OUTPUT OF CALCULATED DISTANCE OF EACH LINK BY MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 87 6.15 SCREEN PRINT OF OUTPUT OF PROBABILITY MATRIX BY MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 88 6.16 SCREEN PRINT OF OUTPUT OF TRAFFIC VOLUME BY MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 89 . 6.17 SCREEN PRINT OF PICTORIAL VIEW OF OUTPUT BY MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 90 6.18 SCREEN PRINT OF OUTPUT OF SHORTEST PATH BY CAPACITY RESTRAINT ROUTE ASSIGNMENT MULTIPATH TECHNIQUE 91 6.19 SCREEN PRINT OF OUTPUT OF CALCULATED DISTANCE OF EACH LINK BY CAPACITY RESTRAINT MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 92 6.20 SCREEN PRINT OF OUTPUT OF PROBABILITY MATRIX BY CAPACITY RESTRAINT MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 93 6.21 SCREEN PRINT OF OUTPUT OF TRAFFIC VOLUME BY CAPACITY RESTRAINT MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 94 6.22 SCREEN PRINT OF PICTORIAL VIEW OF OUTPUT BY CAPACITY RESTRAINT MULTIPATH ROUTE ASSIGNMENT TECHNIQUE 95 vii LIST OF TABLES T.N. TITLE PAGE NO. 5.1 SOFTWARE PACKAGES AND DEVELOPER 40 6.1 ROAD NETWORK DATA 58 6.2 TRAFFIC VOLUME CALCULATED DATA 96 viii CHAPTER- 1 INTRODUCTION 1.1 GENERAL Transportation contributes to the economic, industrial, social and cultural development of any country. Transportation is vital for the economic development of any region since every commodity produced whether it is food, clothing, industrial products or medicine needs transport at all stages from production to distribution. It is not only the key infrastructural input for the growth process but also plays a significant role in promoting national integration, which is particularly important in a large country like India. The transport system also plays an important role of promoting the development of the backward regions and integrating them with the mainstream economy by opening them to trade and investment. In a liberalized set up, an efficient transport network becomes all the more important in order to increase productivity and enhancing the competitive efficiency of the economy in the world market. In the production stage, transportation is required for carrying raw materials like seeds, manure, coal, steel etc. In the distribution stage, transportation is required from the production centers viz; farms and factories to the marketing centers and later to the retailers and consumers for distribution. The inadequate transportation facilities retard the process of socio-economic development of country. The adequacy of transportation system of a country indicates its economic and social development. In addition, the road system also provides linkages to other modes such as Railways, Airports, Ports and Inland Waterway Transport, and complements the efforts of these modes in meeting the needs of transportation. 1.2 NEED OF THE STUDY The subject matter of transportation planning is to plan a transportation network for efficient, comfortable and safe traffic operations at minimal cost.
Recommended publications
  • Modeling Route Choice of Utilitarian Bikeshare Users from GPS Data
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2015 Modeling Route Choice of Utilitarian Bikeshare Users from GPS Data Ranjit Khatri University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Transportation Engineering Commons Recommended Citation Khatri, Ranjit, "Modeling Route Choice of Utilitarian Bikeshare Users from GPS Data. " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3590 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Ranjit Khatri entitled "Modeling Route Choice of Utilitarian Bikeshare Users from GPS Data." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering. Christopher R. Cherry, Major Professor We have read this thesis and recommend its acceptance: Shashi S. Nambisan, Lee D. Han Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Modeling Route Choice of Utilitarian Bikeshare Users from GPS Data A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Ranjit Khatri December 2015 Copyright © 2015 by Ranjit Khatri All rights reserved.
    [Show full text]
  • Soundcast Design Introduction
    SoundCast Design Intro Basic Design 3 SoundCast and Daysim Land use attributes Households & Individuals SoundCast DaySim Travel demand simulator Traffic Trips Trips and Households, conditions Excel Summary Sheets, EMME network Network measures, Benefit Cost assignment Outputs Predictions SoundCast creates… a list of households and trips that looks like our household survey for the entire region! 4 Model Steps Population Synthesizer Who is traveling? Day Pattern How much do people travel? Destination Choice Where do people go? Choice Mode Choice Models What mode do people use? Time Choice What time do people travel at? Route Assignment 5 What paths do trips use? Model Steps Compared to 4K – About People Population Synthesizer Who is traveling? Day Pattern Trip Generation How much do people travel? How many trips are there? Destination Choice Trip Distribution Where do people go? Where do the trips go? Mode Choice Mode Choice What mode do people use? What mode do the trips use? Time Choice Time Choice What time do people travel at? What time do trips occur? Route Assignment Route Assignment 6 What paths do trips use? What paths do trips use? How does it work? Population Synthesizer Who is traveling? Day Pattern How much do people travel? Destination Choice Where do people go? Mode Choice What mode do people use? Time Choice What time do people travel at? Route Assignment 7 What paths do trips use? Geography: Parcels Activity Units: Sim People 8 Population Synthesizer: who is traveling? Example Household: Adult – 29 years Full Time worker Male Child – 3 years Pre-school student Male Household Income - $32,000 9 They live at one of these parcels.
    [Show full text]
  • Fundamentals of Transportation/Mode Choice
    Fundamentals of Transportation PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 10 Nov 2010 00:16:57 UTC Contents Articles Fundamentals of Transportation 1 Fundamentals of Transportation/About 2 Fundamentals of Transportation/Introduction 3 Transportation Economics/Introduction 6 Fundamentals of Transportation/Geography and Networks 11 Fundamentals of Transportation/Trip Generation 20 Fundamentals of Transportation/Trip Generation/Problem 26 Fundamentals of Transportation/Trip Generation/Solution 27 Fundamentals of Transportation/Destination Choice 28 Fundamentals of Transportation/Destination Choice/Background 34 Fundamentals of Transportation/Mode Choice 40 Fundamentals of Transportation/Mode Choice/Problem 49 Fundamentals of Transportation/Mode Choice/Solution 50 Fundamentals of Transportation/Route Choice 52 Fundamentals of Transportation/Route Choice/Problem 61 Fundamentals of Transportation/Route Choice/Solution 61 Fundamentals of Transportation/Evaluation 64 Fundamentals of Transportation/Planning 77 Fundamentals of Transportation/Operations 81 Fundamentals of Transportation/Queueing 85 Fundamentals of Transportation/Queueing/Problem1 93 Fundamentals of Transportation/Queueing/Solution1 93 Fundamentals of Transportation/Queueing/Problem2 94 Fundamentals of Transportation/Queueing/Solution2 94 Fundamentals of Transportation/Queueing/Problem3 95 Fundamentals of Transportation/Queueing/Solution3 95 Fundamentals of Transportation/Traffic Flow 96 Fundamentals
    [Show full text]
  • White Paper Series Bicycle and Pedestrian Forecasting Tools: State
    White Paper Series Bicycle and Pedestrian Forecasting Tools: State of the Practice April 2015 Alisar Aoun, Julie Bjornstad, Brooke DuBose, Meghan Mitman, and Mollie Pelon, Fehr & Peers For: Federal Highway Administration DTFHGI-11-H-00024 www.pedbikeinfo.org This material is based upon work supported by the Federal Highway Administration under Cooperative Agreement No. DTFH610110H-00024. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the Author(s) and do not necessarily reflect the view of the Federal Highway Administration. Introduction Transportation forecasting models predict levels of activity, and help inform decisions on issues such as future facility use and the prioritization of projects. Travel and demand forecasting methods have long been used to estimate the number of vehicles traveling on a specific street or network and to estimate ridership for mass transit. Many jurisdictions and metropolitan planning organizations use forecasting methods to determine the potential impact of new development, changes to roadway capacity, or projected ridership for new transit. However, these methods have traditionally excluded pedestrian and bicycle activity. For communities seeking to support walking and bicycling activity, quantifying the use and potential demand of facilities that support active transportation is increasingly important. To meet this need, bicycle and pedestrian forecasting models are being developed and integrated into planning projects focusing on facilitating mobility, managing resources, and improving health and safety. These emerging forecasting approaches vary widely in the amount of data and level of effort required. The type, specificity, and reliability of data also vary between different forecasting approaches. For example, data used in forecasting models can range from readily available U.S.
    [Show full text]
  • 2011 AICP Review Course FUNCTIONAL AREAS of PRACTICE TRANSPORTATION
    2011 AICP Review Course FUNCTIONAL AREAS OF PRACTICE TRANSPORTATION April 2011 Tom Schulze, AICP Senior Director New Jersey Transit MAY 2011 AICP EXAM REVIEW FUNCTIONAL AREAS OF PRACTICE - TRANSPORTATION Functional Areas of Practice [25%] A. Natural resources and H. Economic development environmental quality and revitalization plans B. Land use I. Historic preservation C. Infrastructure (e.g., water, sewer, J. Urban design power, telecommunications) K. Housing D. Energy L. Neighborhood issues E. Public services (e.g., public safety, M. Rural and small town education, human services) planning F. Transportation N. Comprehensive planning G. Recreation O. Community Development MAY 2011 AICP EXAM REVIEW FUNCTIONAL AREAS OF PRACTICE - TRANSPORTATION Transportation Planning • Planning tools: – Travel forecasting – Population and employment forecasting – Traffic Analysis Zone (TAZ) – Travel Demand Model • Travel Demand Management (TDM) • Intelligent Transportation System (ITS) MAY 2011 AICP EXAM REVIEW FUNCTIONAL AREAS OF PRACTICE - TRANSPORTATION Travel Modeling Four steps of the Urban Transportation Modeling System (UTMS) or the Urban Transportation Planning System (UTPS) 1) trip generation (predicts the number of daily household trips 2) trip distribution (predicts where each trip goes) 3) modal choice (which predicts which travel mode is chosen 4) route assignment (predicts travelers’ routes on roads, rail lines, or bus lines. This traffic flow on network links is then described in terms of volume (quantity) and in terms of speed (quality)
    [Show full text]
  • Integration of Bicycles and Transit
    TRANSIT COOPERATIVE RESEARCH PROGRAM TCRP Synthesis 4 Integration of Bicycles and Transit Transportation Research Board National Research Council TCRP OVERSIGHT AND PROJECT TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1994 SELECTION COMMITTEE OFFICERS CHAIRMAN WILLIAM W. MILLAR Chairman: Joseph M. Sussman, JR East Professor and Professor of Civil and Environmental Port Authority of Allegheny County Engineering, Massachusetts Institute of Technology Vice Chairman: Lillian C. Liburdi, Director, Port Authority, The Port Authority of New York and New Jersey MEMBERS Executive Director: Thomas B. Deen, Transportation Research Board, National Research Council SHARON D. BANKS AC Transit MEMBERS LEE BARNES Barwood, Inc BRIAN J. L. BERRY, Lloyd Viel Berkner Regental Professor & Chair, Bruton Center for Development GERALD L. BLAIR Studies,University of Texas at Dallas Indiana County Transit Authority JOHN E. BREEN, The Nasser I. Al-Rashid Chair in Civil Engineering, the University of Texas at Austin JOHN A. BONSALL KIRK BROWN, Secretary, Illinois Department of Transportation McCormick Rankin International DAVID BURWELL, President, Rails-to-Trails Conservancy SHIRLEY A. DeLIBERO L. GARY BYRD, Consulting Engineer, Alexandria, Virginia New Jersey Transit Corporation A. RAY CHAMBERLAIN, Executive Director, Colorado Department of Transportation (Past Chair, 1993) ROD DIRIDON RAY W. CLOUGH, Nishkian Professor of Structural Engineering, Emeritus, University of California, Santa Clara County Transit District Berkeley SANDRA DRAGGOO RICHARD K. DAVIDSON, Chairman and CEO, Union Pacific Railroad CATA JAMES C. DELONG, Director of Aviation, Stapleton International Airport, Denver, Colorado LOUIS J. GAMBACCINI JERRY L. DEPOY, Former Vice President, Properties & Facilities, USAir SEPTA DELON HAMPTON, Chairman & CEO, Delon Hampton & Associates DELON HAMPTON DON C. KELLY, Secretary and Commissioner of Highways, Transportation Cabinet, Kentucky Delon Hampton & Associates ROBERT KOCHANOWSKI, Executive Director, Southwestern Pennsylvania Regional Planning Commission RICHARD R.
    [Show full text]
  • Synergistic Interactions of Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies
    MTI Funded by U.S. Department of Services Transit Census California of Water 2012 Synergistic Interactions of Transportation and California Department of Transportation Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies MTI ReportMTI 12-02 MTI Report 12-50 December 2012 MINETA TRANSPORTATION INSTITUTE MTI FOUNDER Hon. Norman Y. Mineta The Mineta Transportation Institute (MTI) was established by Congress in 1991 as part of the Intermodal Surface Transportation Equity Act (ISTEA) and was reauthorized under the Transportation Equity Act for the 21st century (TEA-21). MTI then successfully MTI BOARD OF TRUSTEES competed to be named a Tier 1 Center in 2002 and 2006 in the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). Most recently, MTI successfully competed in the Surface Transportation Extension Act of 2011 to Founder, Honorable Norman Joseph Boardman (Ex-Officio) Diane Woodend Jones (TE 2016) Michael Townes* (TE 2017) be named a Tier 1 Transit-Focused University Transportation Center. The Institute is funded by Congress through the United States Mineta (Ex-Officio) Chief Executive Officer Principal and Chair of Board Senior Vice President Department of Transportation’s Office of the Assistant Secretary for Research and Technology (OST-R), University Transportation Secretary (ret.), US Department of Amtrak Lea+Elliot, Inc. Transit Sector, HNTB Transportation Centers Program, the California Department of Transportation (Caltrans), and by private grants and donations. Vice Chair Anne Canby (TE 2017) Will Kempton (TE 2016) Bud Wright (Ex-Officio) Hill & Knowlton, Inc. Director Executive Director Executive Director OneRail Coalition Transportation California American Association of State The Institute receives oversight from an internationally respected Board of Trustees whose members represent all major surface Honorary Chair, Honorable Bill Highway and Transportation Officials transportation modes.
    [Show full text]
  • Assignment of Walking Trips to Pedestrian Network in the Context of the 4-Steps Travel Demand Model
    MSc thesis Geomatics for the built environment Assignment of walking trips to pedestrian network in the context of the 4-steps travel demand model A macroscale approach of walking Ioanna Tsakalakidou ASSIGNMENTOFWALKINGTRIPSTO PEDESTRIANNETWORKINTHECONTEXTOF THE 4-STEPS TRAVEL DEMAND MODEL AMACROSCALEAPPROACHOFWALKING A thesis submitted to the Delft University of Technology in partial fulfillment of the requirements for the degree of Master of Science in Geomatics for the Built Environment by Ioanna Tsakalakidou July 2019 Ioanna Tsakalakidou: Assignment of walking trips to pedestrian network in the context of the 4-steps travel demand model (2019) cb This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Supervisors: Dr.ir. Pirouz Nourian Dr.ir. Goncalo Correia Co-reader: Dr.ir. Martijn Meijers ABSTRACT In the transportation planning process, the Four Step Model (FSM) is used to define the needs and requirements of the transportation system within a city or a region. Despite its wide use, the model is focused on vehicular trips and fails to repre- sent the demand of walking activity. The limited work that has been performed to address the misrepresentation of walking in the context of the FSM, still does not address the last step of the four step model, the assignment of the walking trips to the network. Stemming from this literature gap, and the need to enhance the role of walking activity within the transportation modeling, the main question of this thesis is to develop a method for the assignment of the walking trips to the street network.
    [Show full text]
  • Dimensional Travel Behavioral Theory, Procedural Models and Simulation-Based Applications
    ABSTRACT Title of dissertation: ON AGENT-BASED MODELING: MULTI- DIMENSIONAL TRAVEL BEHAVIORAL THEORY, PROCEDURAL MODELS AND SIMULATION-BASED APPLICATIONS Chenfeng Xiong, Doctor of Philosophy, 2015 Dissertation directed by: Professor Lei Zhang Department of Civil and Environmental Engineering This dissertation proposes a theoretical framework to modeling multidimen- sional travel behavior based on artificially intelligent agents, search theory, proce- dural (dynamic) models, and bounded rationality. For decades, despite the number of heuristic explanations for different results, the fact that \almost no mathematical theory exists which explains the results of the simulations" remains as one of the large drawbacks of agent-based computational process approach. This is partly the side effect of its special feature that \no analytical functions are required". Among the rapidly growing literature devoted to the departure from rational behavior as- sumptions, this dissertation makes effort to embed a sound theoretical foundation for computational process approach and agent-based microsimulations for transporta- tion system modeling and analyses. The theoretical contribution is three-fold: (1) It theorizes multidimensional knowledge updating, search start/stopping criteria, and search/decision heuristics. These components are formulated or empirically mod- eled and integrated in a unified and coherent approach. (2) Procedural and dynamic agent-based decision-making is modeled. Within the model, agents make decisions. They also make decisions on how and when to make those decisions. (3) Replace conventional user equilibrium with a dynamic behavioral user equilibrium (BUE). Search start/stop criteria is defined in the way that the modeling process should eventually lead to a steady state that is structurally different to user equilibrium (UE) or dynamic user equilibrium (DUE).
    [Show full text]
  • Sustainable Public Transportation in Large Cities: Demand Estimation Tadeas Umlauf University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2014-01-01 Sustainable Public Transportation In Large Cities: Demand Estimation Tadeas Umlauf University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Civil Engineering Commons Recommended Citation Umlauf, Tadeas, "Sustainable Public Transportation In Large Cities: Demand Estimation" (2014). Open Access Theses & Dissertations. 1752. https://digitalcommons.utep.edu/open_etd/1752 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. SUSTAINABLE PUBLIC TRANSPORTATION IN LARGE CITIES: DEMAND ESTIMATION TADEÁŠ UMLAUF Department of Civil Engineering APPROVED: Ruey Long Cheu, Ph.D., Chair Carlos Ferregut, Ph.D. Prof. Dr. Ing. Miroslav Svítek Luis David Galicia, Ph.D. Bess Sirmon-Taylor, Ph.D. Interim Dean of the Graduate School Copyright © by Tadeáš Umlauf 2014 Dedication I dedicate this work to my amazing family and friends who supported me, inspired me, and gave me motivation during my studies. I would like to dedicate this thesis to the special memory of my grandfather, Walter Umlauf, who was not allowed to study. This work is dedicated to the memory of my supervisor Doc. Ing. Ladislav Bína, CSc., who encouraged me to enroll in this program and provided me advices and inspiration during my studies in Prague and during writing this thesis. Dr. Bína passed away in March, 2014 just a few days after he provided me valuable suggestions here in El Paso.
    [Show full text]
  • Traffic Assignment
    Traffic assignment Route assignment, route choice, or traffic assignment concerns the selection of routes (alternative called paths) between origins and destinations in transportation networks. It is the fourth step in the conventional transportation forecasting model, following trip generation, trip distribution, and mode choice. The zonal interchange analysis of trip distribution provides origin-destination trip tables. Mode choice analysis tells which travelers will use which mode. To determine facility needs and costs and benefits, we need to know the number of travelers on each route and link of the network (a route is simply a chain of links between an origin and destination). We need to undertake traffic (or trip) assignment. Suppose there is a network of highways and transit systems and a proposed addition. We first want to know the present pattern of traffic delay and then what would happen if the addition were made. Purpose of traffic assignment 1. To estimate the volume of traffic the links of the network and 2. Obtain aggregate net work measures. 3. To estimate inter zonal travel cost. 4. To analyze the travel pattern of each origin to destination(O-D)pair. 5. To identify congested links and to collect traffic data useful for the design of future junctions. 6. to provide necessary input and feedback to other planning tools. 7. to determine the deficiencies in the existing system 8. To estimate the volume of traffic on the links of the network and obtain aggregate network measures. 9. To estimate inter zonal travel cost. 10. To analyze the travel pattern of each origin to destination(O-D) pair.
    [Show full text]
  • Dynamic Traffic Assignment: a Primer
    TRANSPORTATION RESEARCH Number E-C153 June 2011 Dynamic Traffic Assignment A Primer TRANSPORTATION RESEARCH BOARD 2011 EXECUTIVE COMMITTEE OFFICERS Chair: Neil J. Pedersen, Administrator, Maryland State Highway Administration, Baltimore Vice Chair: Sandra Rosenbloom, Professor of Planning, University of Arizona, Tucson Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board TRANSPORTATION RESEARCH BOARD 2011–2012 TECHNICAL ACTIVITIES COUNCIL Chair: Katherine F. Turnbull, Executive Associate Director, Texas Transportation Institute, Texas A&M University, College Station Technical Activities Director: Mark R. Norman, Transportation Research Board Jeannie G. Beckett, Principal, Beckett Group, Gig Harbor, Washington, Marine Group Chair Paul Carlson, Research Engineer, Texas Transportation Institute, Texas A&M University, College Station, Operations and Maintenance Group Chair Thomas J. Kazmierowski, Manager, Materials Engineering and Research Office, Ontario Ministry of Transportation, Toronto, Canada, Design and Construction Group Chair Ronald R. Knipling, Principal, safetyforthelonghaul.com, Arlington, Virginia, System Users Group Chair Mark S. Kross, Consultant, Jefferson City, Missouri, Planning and Environment Group Chair Edward V. A. Kussy, Partner, Nossaman, Guthner, Knox, and Elliott, LLP, Washington, D.C., Legal Resources Group Chair Peter B. Mandle, Director, LeighFisher, Inc., Burlingame,
    [Show full text]