Fundamentals of Transportation/Mode Choice
Total Page:16
File Type:pdf, Size:1020Kb
Fundamentals of Transportation PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 10 Nov 2010 00:16:57 UTC Contents Articles Fundamentals of Transportation 1 Fundamentals of Transportation/About 2 Fundamentals of Transportation/Introduction 3 Transportation Economics/Introduction 6 Fundamentals of Transportation/Geography and Networks 11 Fundamentals of Transportation/Trip Generation 20 Fundamentals of Transportation/Trip Generation/Problem 26 Fundamentals of Transportation/Trip Generation/Solution 27 Fundamentals of Transportation/Destination Choice 28 Fundamentals of Transportation/Destination Choice/Background 34 Fundamentals of Transportation/Mode Choice 40 Fundamentals of Transportation/Mode Choice/Problem 49 Fundamentals of Transportation/Mode Choice/Solution 50 Fundamentals of Transportation/Route Choice 52 Fundamentals of Transportation/Route Choice/Problem 61 Fundamentals of Transportation/Route Choice/Solution 61 Fundamentals of Transportation/Evaluation 64 Fundamentals of Transportation/Planning 77 Fundamentals of Transportation/Operations 81 Fundamentals of Transportation/Queueing 85 Fundamentals of Transportation/Queueing/Problem1 93 Fundamentals of Transportation/Queueing/Solution1 93 Fundamentals of Transportation/Queueing/Problem2 94 Fundamentals of Transportation/Queueing/Solution2 94 Fundamentals of Transportation/Queueing/Problem3 95 Fundamentals of Transportation/Queueing/Solution3 95 Fundamentals of Transportation/Traffic Flow 96 Fundamentals of Transportation/Traffic Flow/Problem 104 Fundamentals of Transportation/Traffic Flow/Solution 104 Fundamentals of Transportation/Queueing and Traffic Flow 105 Fundamentals of Transportation/Shockwaves 111 Fundamentals of Transportation/Shockwaves/Problem 115 Fundamentals of Transportation/Shockwaves/Solution 115 Fundamentals of Transportation/Traffic Signals 116 Fundamentals of Transportation/Traffic Signals/Problem 125 Fundamentals of Transportation/Traffic Signals/Solution 126 Fundamentals of Transportation/Design 127 Fundamentals of Transportation/Sight Distance 129 Fundamentals of Transportation/Sight Distance/Problem 135 Fundamentals of Transportation/Sight Distance/Solution 135 Fundamentals of Transportation/Grade 136 Fundamentals of Transportation/Grade/Problem 142 Fundamentals of Transportation/Grade/Solution 143 Fundamentals of Transportation/Earthwork 144 Fundamentals of Transportation/Earthwork/Problem 149 Fundamentals of Transportation/Earthwork/Solution 149 Fundamentals of Transportation/Horizontal Curves 150 Fundamentals of Transportation/Horizontal Curves/Problem 157 Fundamentals of Transportation/Horizontal Curves/Solution 158 Fundamentals of Transportation/Vertical Curves 159 Fundamentals of Transportation/Vertical Curves/Problem 165 Fundamentals of Transportation/Vertical Curves/Solution 166 Transportation Economics/Pricing 167 Fundamentals of Transportation/Conclusions 179 Transportation Economics/Decision making 180 References Article Sources and Contributors 187 Image Sources, Licenses and Contributors 189 Article Licenses License 191 Fundamentals of Transportation 1 Fundamentals of Transportation Table of contents Introductory Material • /About/ • /Introduction/ /Planning/ • /Decision Making/ • /Modeling/ • /Geography and Networks/ • /Land Use Forecasting/ • /Trip Generation/ • /Destination Choice/ • /Mode Choice/ • /Route Choice/ • /Evaluation/ Market Street, San Francisco /Operations/ • /Queueing/ • /Traffic Flow/ • /Queueing and Traffic Flow/ • /Shockwaves/ • /Traffic Signals/ • /Traffic Control Devices/ • /Analogs/ /Design/ • /Sight Distance/ • /Grade/ • /Earthwork/ • /Horizontal Curves/ • /Vertical Curves/ Fundamentals of Transportation 2 /Economics/ • /Pricing/ Conclusions • /Conclusions/ Useful Off-site Resources • NSF STREET: Simulating Transportation for Realistic Engineering Education and Training [1] • Transportation Engineering Lab Manual [2] • Pavement Interactive [3] References [1] http:/ / street. umn. edu [2] http:/ / www. webs1. uidaho. edu/ niatt_labmanual/ [3] http:/ / pavementinteractive. org Fundamentals of Transportation/About This book is aimed at undergraduate civil engineering students, though the material may provide a useful review for practitioners and graduate students in transportation. Typically, this would be for an Introduction to Transportation course, which might be taken by most students in their sophomore or junior year. Often this is the first engineering course students take, which requires a switch in thinking from simply solving given problems to formulating the problem mathematically before solving it, i.e. from straight-forward calculation often found in undergraduate Calculus to vaguer word problems more reflective of the real world. How an idea becomes a road The plot of this textbook can be thought of as "How an idea becomes a road". The book begins with the generation of ideas. This is followed by the analysis of ideas, first determining the origin and destination of a transportation facility (usually a road), then the required width of the facility to accommodate demand, and finally the design of the road in terms of curvature. As such the book is divided into three main parts: planning, operations, and design, which correspond to the three main sets of practitioners within the transportation engineering community: transportation planners, traffic engineers, and highway engineers. Other topics, such as pavement design, and bridge design, are beyond the scope of this work. Similarly transit operations and railway engineering are also large topics beyond the scope of this book. Each page is roughly the notes from one fifty-minute lecture. Fundamentals of Transportation/About 3 Authors Authors of this book include David Levinson [1], Henry Liu [2], William Garrison [3], Adam Danczyk, Michael Corbett. Karen Dixon of Oregon State University has contributed Flash animations developed by herself and her students linked to in this book. References [1] http:/ / nexus. umn. edu [2] http:/ / www. ce. umn. edu/ ~liu/ [3] http:/ / en. wikipedia. org/ wiki/ William_Garrison_(geographer) Fundamentals of Transportation/Introduction Transportation moves people and goods from one place to another using a variety of vehicles across different infrastructure systems. It does this using not only technology (namely vehicles, energy, and infrastructure), but also people’s time and effort; producing not only the desired outputs of passenger trips and freight shipments, but also adverse outcomes such as air pollution, noise, congestion, crashes, injuries, and fatalities. Figure 1 illustrates the inputs, outputs, and outcomes of transportation. In the upper left are traditional inputs (infrastructure (including pavements, bridges, etc.), labor required to produce transportation, land consumed by infrastructure, energy inputs, and vehicles). Infrastructure is the traditional preserve of civil engineering, while vehicles are Transportation inputs and outputs anchored in mechanical engineering. Energy, to the extent it is powering existing vehicles is a mechanical engineering question, but the design of systems to reduce or minimize energy consumption require thinking beyond traditional disciplinary boundaries. On the top of the figure are Information, Operations, and Management, and Travelers’ Time and Effort. Transportation systems serve people, and are created by people, both the system owners and operators, who run, manage, and maintain the system and travelers who use it. Travelers’ time depends both on freeflow time, which is a product of the infrastructure design and on delay due to congestion, which is an interaction of system capacity and its use. On the upper right side of the figure are the adverse outcomes of transportation, in particular its negative externalities: • by polluting, systems consume health and increase morbidity and mortality; Fundamentals of Transportation/Introduction 4 • by being dangerous, they consume safety and produce injuries and fatalities; • by being loud they consume quiet and produce noise (decreasing quality of life and property values); and • by emitting carbon and other pollutants, they harm the environment. All of these factors are increasingly being recognized as costs of transportation, but the most notable are the environmental effects, particularly with concerns about global climate change. The bottom of the figure shows the outputs of transportation. Transportation is central to economic activity and to people’s lives, it enables them to engage in work, attend school, shop for food and other goods, and participate in all of the activities that comprise human existence. More transportation, by increasing accessibility to more destinations, enables people to better meet their personal objectives, but entails higher costs both individually and socially. While the “transportation problem” is often posed in terms of congestion, that delay is but one cost of a system that has many costs and even more benefits. Further, by changing accessibility, transportation gives shape to the development of land. Modalism and Intermodalism Transportation is often divided into infrastructure modes: e.g. highway, rail, water, pipeline and air. These can be further divided. Highways include different vehicle types: cars, buses, trucks, motorcycles, bicycles, and pedestrians. Transportation can be further separated into freight and passenger, and urban and inter-city. Passenger transportation is divided in public (or mass) transit