Basic Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson #1: Architecture Features Through the Ages
Unit Two: History of Architecture and Building Codes Lesson #1: Architecture Features Through the Ages Objectives Students will be able to… . Summarize the architecture features through Stone Ages to Neo-Classical Time. Common Core Standards LS 11-12.6 RSIT 11-12.2 RLST 11-12.2 Problem Solving/Critical Thinking 5.4 Health and Safety 6.2, 6.3, 6.4, 6.5, 6.6, 6.12 Technical Knowledge and Skills 10.1, 10.2, 10.3 Residential and Commercial Construction Pathway D2.1, D2.8, D2.9, D3.1, D3.2, D3.3, D3.4, D3.7 Responsibility and Leadership 7.4, 9.3 Materials Architecture Features Through the Ages Power Point https://documentcloud.adobe.com/link/track?uri=urn%3Aaaid%3Ascds%3AUS%3Ab4f485df -0d78-4fa9-9509-0b9ea3e1952c Architecture Features Through the Ages Worksheet Lesson Sequence . Introduce to students that a specific architectural style is characterized by a collection of design details. These details include size and shape of windows, the size and placement of a porch, and the presence or absence of columns. Review the Architecture Features Through the Ages PowerPoint with students. Have students fill in the Architecture Features Through the Ages Worksheet while reviewing the power point. Discuss and answer any questions students may have along the way. © BITA: A program promoted by California Homebuilding Foundation BUILDING INDUSTRY TECHNOLOGY ACADEMY: YEAR TWO CURRICULUM Assessment Check for understanding while presenting PowerPoint. Grade student worksheets. Reteach and clarify any misunderstandings as needed. Accommodations/Modifications Check for Understanding One on One Support Peer Support Extra Time If Needed © BITA: A program promoted by California Homebuilding Foundation BUILDING INDUSTRY TECHNOLOGY ACADEMY: YEAR TWO CURRICULUM Architecture Features Through the Ages Worksheet As you watch the PowerPoint on Architectural Features Through the Ages fill in summary with the correct answers. -
Adobe Corporate Campus Utah, Usa – Structure Becomes the Architecture
ADOBE CORPORATE CAMPUS UTAH, USA – STRUCTURE BECOMES THE ARCHITECTURE GEOFF S SHARP Senior Project Engineer, Holmes Consulting Group LP SUMMARY Phase one of Adobe Corporation’s new corporate campus is an example of where the thoughtful selection of structural system and construction materials allowed for seamless integration of engineering and architecture. Constructed of post tensioned and conventionally reinforced concrete the office structure showcases what can be achieved when the structure becomes the architecture. At over 200 metres in length and boasting cantilevered frames and a 25 metre “bridge” the use of concrete was essential to the success of this new office building. INTRODUCTION In late 2012, United States based software giant Adobe Corporation moved into their new 28,000 square metre campus in Lehi, Utah. The decision to expand away from their long standing Silicon Valley home required their new facility to make a statement. It needed to attract a new class of outdoors-loving young professionals. Located approximately 50km south of Salt Lake City, the resulting buildings form stage one of their impressive new home on the “Silicon Slopes” of Utah. Challenges included a highly sloped site with significant variation in subsoil conditions and a dual carriage roadway dividing the property. Figure 1 below shows a rendering of the phase one buildings Figure 1 - Phase 1 Adobe Campus Rendering, courtesy of WRNS Studio The lead architects for the project were WRNS Studio of San Francisco with structural engineering delivered through a collaboration between Holmes Culley in San Francisco and Dunn Associates in Salt Lake City. The design process between architect and engineer was very successful due to an open and collaborative approach. -
Cantilever Bridges: the Governor Harry W
CANTILEVER BRIDGES: THE GOVERNOR HARRY W. NICE MEMORIAL BRIDGE From a technical perspective, cantilever construction of a bridge defines a specific form of support of the bridge rather than a particular bridge type such as the truss or girder. Simply supported bridges are directly supported on piers and abutments, while continuous structures, as developed in both metal and reinforced concrete during the late nineteenth and early twentieth centuries, include spans that are continuous across one or more intermediate supports. By contrast, the cantilever form of support occurs when the support is at one end and the other end of the span is free. Cantilever bridges consist of a series of cantilevered spans including a main span and two anchor spans which flank it (Pennsylvania Historical and Museum Commission, and Pennsylvania Department of Transportation 1986:124). Based on historical research alone, cantilever bridges in Maryland appear to be represented by only one bridge, which may be briefly described in order to provide historic technological context for the evaluation of that bridge, the 1940 Governor Harry W. Nice Memorial Bridge carrying U.S. 301 over the Potomac River. Bridge historian J.A.L. Waddell noted that "the development of the cantilever. did not proceed very far until modern times, when the truss form of structure had become established and when iron and steel constituted the materials of construction" (Waddell 1916:7). Waddell and subsequent technological historians dated the major advent of modern cantilever bridges to the design and construction of the high bridge over the Kentucky River at Dixville in 1876-1877. -
Architecture Terms
Architecture Terms ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● What is Architecture What is Architecture Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. Form as defined by the book- an object that can be defined in 3 dimensions. Informal- not according to the prescribed, official, or customary way or manner; irregular; unofficial: FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. FORMAL-INFORMAL Architecture (Latin architectura, from the Greek ἀρχιτέκτων arkhitekton "architect", from ἀρχι- "chief" and τέκτων "builder") is both the process and the product of planning, designing, and constructing buildings and other physical structures. -
Timber Use in the Chinese Gardens and Architecture
Timber Use in the Chinese Gardens and Architecture 木材在中国园林及建筑中的应用 Ying JIANG 2012.05 CAUPD CAUPD • 1、Reasons why timber constructions appear and become mainstream in China • 为什么中国会发展出木结构建筑并形成主流 • 2 The development of timber constructions in ancient China • 木结构建筑在中国古代的发展 • 3 The development of timber constructions in ancient China • 木结构建筑在中国近现代的发展 • 4 The advantages of timber • 木材的优点 • 5 Conclusion • 结语 CAUPD • 1、Reasons why timber constructions appear and become mainstream in China • 为什么中国会发展出木结构建筑并形成主流 In the ancient times, the weather and geographical condition is suitable for growing Climate plants in the Yellow River basin. 气候 Hydrology 水文 Geography The dense forest and river here make it easy to get raw 地理 materials and transport them. CAUPD • 1、Reasons why timber constructions appear and become mainstream in China • 为什么中国会发展出木结构建筑并形成主流 Cutting easy Timber becomes 采伐容易 the first choice to build houses processing easy because it is lighter 加工容易 and more easily to cut and process. Light weight 重量轻 Mining hard 开采困难 processing hard 加工困难 heavy weight 重量沉 CAUPD • 1、Reasons why timber constructions appear and become mainstream in China • 为什么中国会发展出木结构建筑并形成主流 The Chinese philosophy- Taoism believes that the basic substances metal that compose the world are metal, wood, water, fire and soil, and each of them corresponds to one of the five direction. Soil represents Central on behalf of the load of all earth things and soil would have a earth water high status. Five elements of wood represent east and symbol of spring and vitality; while Gold acting on behalf of the West and a symbol of force and punishment to kill; water, fire for the intangible thing, therefore, the five elements fire wood represent the most advocates of the five substances, only "soil" and "wood" is the most suitable for the construction of housing people live. -
A Large Empty Space Surrounded by Buildings Connected with One Another Either Directly Or Through Verandas - More Common in Northern Chinese Architecture B
Architectural Characteristics 1. Courtyard and Sky wells a. Open courtyard - A large empty space surrounded by buildings connected with one another either directly or through verandas - More common in northern Chinese architecture b. "Sky well" - A relatively small enclosed courtyard which offer small opening to the sky through the roof space from the floor up - More common in southern China 2. Hierarchical - importance and uses of buildings are based on the strict placement of buildings in a property/complex a. Orientation of Doors - Facing the front (important) - Facing the sides (less important) - Facing the rear (least important) b. Location of Buildings - At the back of properties are more important : a. Elder members of the family b. Celebratory rites c. Ancestral plaques - In front of the property: typically for servants and kitchen c. Courtyard Location - central courtyard are more important than peripheral ones 3. Horizontal Emphasis - Emphasis on the breadth and less on height with close heavy platform and a large roof that floats over this base with vertical walls not well emphasized - Stresses the visual impact of the width of the buildings to denote the all-embracing nature of imperial China 4. Mythical Concepts - Feng shui and mythic elements in the construction and layout of Chinese architecture. This includes the use of: a. Screen walls to face the main entrance of the house, which stems from the belief that evil things travel on straight lines b. Talismans and fortuitous imagery: 1) Door gods on doorways to ward evil and encourage the flow of good fortune 2) Fu Lu Shou - Taoist concept which denotes the attributes of the good life: good fortune, prosperity and longevity Craft: Techniques & Materials 1. -
Using a Cmos-Biomems Cantilever Sensor For
USING A CMOS-BIOMEMS CANTILEVER SENSOR FOR ORCHID VIRUS DETECTION Lu-Hsun Cheng1, Ya-Chun Chang2, Wen-Chi Hu2, Hsin-Hao Liao3, Hann-Huei Tsai3,Ying-Zong Juang3 and Yen-Wen Lu1 1Dept. of Bio-Industrial Mechatronics Engineering, 2Dept. of Plant Pathology & Microbiology, National Taiwan University, Taipei Taiwan, ROC, 3National Chip Implementation Center (CIC), Hsinchu, Taiwan, R.O.C ABSTRACT We present a preliminary study on utilizing cantilever biosensors to detect Odontoglossum ringspot tobamovirus (ORSV) - one of the most prevalent viruses affecting the health of orchids. The cantilever surfaces of the biosensor are immobilized by ORSV-antibody (Ab) as the recognition probe for ORSV detection. Implemented by using commercially available CMOS technology and post-processed for bio-MEMS capability, the biosensors are embedded with piezoresistors, which can realize surface stress changes due to cantilever deflection coming from the specific bioaffinity between the antigen (Ag) and the antibody. The result shows -0.7% and +0.6% resistivity change when ORSV-Ab and ORSV are respectively presented. KEYWORDS: Cantilever, Odontoglossum ringspot tobamovirus, Piezoresistor, CMOS BioMEMS INTRODUCTION Cantilever biosensors have been used as a sensitive and label-free diagnostic platform for malignant disease diagnosis by detecting DNA mismatch or protein biomarkers [1-3]. Figure 1 depicted the schematics of our device that contained an array of cantilevers with imbedded piezoresistors. The detection is normally achieved by modifying the surface of the cantilever with recognition molecules. The specific interaction between the recognition molecules and the target biomarkers generates surface stress and makes the deflection of the cantilever. The deflection, which is normally several nanometers, can be measured using either optical or piezoresistive readouts. -
Post – and – Lintel *
Post – and – lintel * The simplest illustration of load and support in construction is the post – and – lintel system, in which two upright members (posts, columns, piers) hold up a third member ( lintel, beam, girder, rafter) laid horizontally across their top surface. This is the basis for the evolution of all openings. But, in its pure form, the post – and – lintel is seen only in colonnades and in framed structures, since the posts of doors, windows, ceilings, and roofs are part of the wall. The job of the lintel is to bear the loads that rest on it (and its own load) without deforming or breaking. Failure occurs only when the material is too weak or the lintel is too long. Lintels composed of materials that are weak in bending, such as stone, must be short, while lintels in materials that are strong in bending, such as steel, may span far greater openings. Masonry lintels are inefficient because they must depend on the cohesiveness of mortar, which is weaker than the blocks it bonds; so, in masonry construction, lintels of monolithic (single – slab) stone, wood, and stronger materials are employed . The job of the post is to support the lintel and its loads without crushing or buckling. Failure occurs, as in lintels, from excessive weakness or length, but the difference is that the material must be especially strong in compression. Stone, which has this property, is more versatile as a post than as a lintel; under heavy loads it is superior to wood but not to iron, steel, or reinforced concrete. -
Builder's Guide to Trusses
Table of Contents Roof Construction Techniques: Pro’s and Con’s . 2 Trusses: Special Benefits for Architects and Engineers . 4 Special Benefits for Contractors and Builders . 5 Special Benefits for the Owner. 5 How Does A Truss Work? . 6 Typical Framing Systems. 8 Gable Framing Variations . 11 Hip Set Framing Variations . 13 Additional Truss Framing Options Valley Sets . 15 Piggyback Trusses . 17 Typical Truss Configurations . 18 Typical Truss Shapes. 20 Typical Bearing / Heel Conditions Exterior Bearing Conditions. 21 Crushing at the Heel . 22 Trusses Sitting on Concrete Walls . 22 Top Chord Bearing. 23 Mid-Height Bearing . 23 Leg-Thru to the Bearing. 23 Tail Bearing Tray. 24 Interior Bearing Conditions . 24 Typical Heel Conditions. 25 Optional End Cosmetics Level Return. 25 Nailer . 25 Parapet. 26 Mansard . 26 Cantilever. 26 Stub . 26 Bracing Examples . 27 Erection of Trusses . 29 Temporary Bracing . 30 Checklist for Truss Bracing Design Estimates . 32 Floor Systems . 33 Typical Bearing / Heel Conditions for Floor Trusses Top Chord, Bottom Chord, and Mid-Height Bearing. 34 Interior Bearing Conditions . 35 Ribbon Boards, Strongbacks and Fire Cut Ends . 36 Steel Trusses . 37 Ask Charlie V. 38 Charlie’s Advice on Situations to Watch Out for in the Field. 41 Glossary of Terms. 42 Appendix - References. 48 1 Builders, Architects and Home Owners today have many choices about what to use in roof and floor systems Traditional Stick Framing – Carpenters take 2x6, Truss Systems – in two primary forms: 2x8, 2x10 and 2x12 sticks of lumber to the job • Metal Plate Connected Wood Trusses – site. They hand cut and fit this lumber together Engineered trusses are designed and into a roof or floor system. -
1 Classical Architectural Vocabulary
Classical Architectural Vocabulary The five classical orders The five orders pictured to the left follow a specific architectural hierarchy. The ascending orders, pictured left to right, are: Tuscan, Doric, Ionic, Corinthian, and Composite. The Greeks only used the Doric, Ionic, and Corinthian; the Romans added the ‘bookend’ orders of the Tuscan and Composite. In classical architecture the selected architectural order for a building defined not only the columns but also the overall proportions of a building in regards to height. Although most temples used only one order, it was not uncommon in Roman architecture to mix orders on a building. For example, the Colosseum has three stacked orders: Doric on the ground, Ionic on the second level and Corinthian on the upper level. column In classical architecture, a cylindrical support consisting of a base (except in Greek Doric), shaft, and capital. It is a post, pillar or strut that supports a load along its longitudinal axis. The Architecture of A. Palladio in Four Books, Leoni (London) 1742, Book 1, plate 8. Doric order Ionic order Corinthian order The oldest and simplest of the five The classical order originated by the The slenderest and most ornate of the classical orders, developed in Greece in Ionian Greeks, characterized by its capital three Greek orders, characterized by a bell- the 7th century B.C. and later imitated with large volutes (scrolls), a fascinated shaped capital with volutes and two rows by the Romans. The Roman Doric is entablature, continuous frieze, usually of acanthus leaves, and with an elaborate characterized by sturdy proportions, a dentils in the cornice, and by its elegant cornice. -
Design of Reinforced Concrete Bridges
Design of Reinforced Concrete Bridges CIV498H1 S Group Design Project Instructor: Dr. Homayoun Abrishami Team 2: Fei Wei 1000673489 Jonny Yang 1000446715 Yibo Zhang 1000344433 Chiyun Zhong 999439022 Executive Summary The entire project report consists of two parts. The first section, Part A, presents a complete qualitative description of typical prestressed concrete bridge design process. The second part, Part B, provides an actual quantitative detailed design a prestressed concrete bridge with respect to three different design standards. In particular, the first part of the report reviews the failure of four different bridges in the past with additional emphasis on the De La Concorde Overpass in Laval, Quebec. Various types of bridges in terms of materials used, cross-section shape and structural type were investigated with their application as well as the advantages and disadvantages. In addition, the predominant differences of the Canadian Highway and Bridge Design Code CSA S6-14 and CSA S6-66, as well as AASHTO LRFD 2014 were discussed. After that, the actual design process of a prestressed concrete bridge was demonstrated, which started with identifying the required design input. Then, several feasible conceptual design options may be proposed by design teams. Moreover, the purpose and significance of structural analysis is discussed in depth, and five different typical analysis software were introduced in this section. Upon the completion of structural analysis, the procedure of detailed structure design and durability design were identified, which included the choice of materials and dimensions of individual specimens as well as the detailed design of any reinforcement profile. Last but not least, the potential construction issues as well as the plant life management and aging management program were discussed and presented at the end of the Part A. -
Comparative Design of a Balanced Cantilever Bridge in Java and Eurocode
The International Journal of Engineering and Science (IJES) || Volume || 10 || Issue || 3 || Series I || Pages || PP 15-33 || 2021 || ISSN (e): 2319-1813 ISSN (p): 20-24-1805 Comparative Design of a Balanced Cantilever Bridge In Java And Eurocode Umeonyiagu I.E. 1, Onwuka F.E.2, Ogbonna N.P3. 1. Department of Civil Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria. 2. Department of Civil Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria. 3. Federal polytechnic Nekede Owerri, Nigeria. --------------------------------------------------------ABSTRACT---------------------------------------------------------------- This research analyzed, designed and detailed balanced cantilever bridges to Euro codes using manual and computer methods. The design was done considering only the superstructure which forms the dynamic element as a load carrying member. A Java based computer program to analyze, design and detail the balanced cantilever bridge was also written. The Java program focused on the design of prestressing cables for box- girder bridges using balanced cantilever method. The program made use of algorithms and visualization techniques. The segments of the bridge ranged from 15 to 48. The maximum number of cables was 819. Also the maximum number of strands was 9822. The maximum bending moment and shear force were 5790000kNm and 44362.5kN respectively. The manual design were done for 100m, 150m 200m 250m and 300m main spans. These results were then compared to the results gotten from the Java computer program. It could be seen that the results of both analyses and designs obtained using manual procedures and computer program were approximately the same. Furthermore, the percentage difference results showed very little or no differences between the various results obtain from both manual and computer program analyses.