Design of Reinforced Concrete Bridges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of a High Performance Concrete Box Girder Bridge
Evaluation of a High Performance Concrete Box Girder Bridge Andreas Greuel T. Michael Baseheart, Ph. D. Graduate Research Assistant Associate Professor of Civil University of Cincinnati Engineering Cincinnati, Ohio University of Cincinnati Cincinnati, Ohio Bradley T. Rogers Engineer LJB, Inc. As part of the FHWA (Federal Highway Admin- Dayton, Ohio istration) High Performance Concrete Bridge Program, two full-scale truckload tests of Bridge GUE-22-6.57 were carried out. The main ob- jectives of these tests were to investigate the static and dynamic response of the high perfor- Richard A. Miller, Ph. D. mance concrete (HPC) structure. A secondary Associate Professor of Civil Engineering objective was to investigate the load transfer University of Cincinnati between the box girders through experimental Cincinnati, Ohio middepth shear keys. The structure was loaded using standard Ohio Department of Transporta- tion (ODOT) dump trucks. A model test of the bridge was conducted as well. It was found that the bridge behavior is well predicted using sim- ple models. The bridge behaves as a single unit and all girders share the load almost equally. Bahram M. Shahrooz, Ph. D. The dynamic behavior of the bridge is typical Associate Professor of Civil for comparable structures. Engineering University of Cincinnati Cincinnati, Ohio 60 PCI JOURNAL he use of high performance con- located on US Route 22, a heavily in that the Ohio box girder has only a crete (HPC) can lead to more traveled two-lane highway near Cam- 5 in. (127 mm ) thick bottom flange Teconomical bridge designs be- bridge, Ohio. rather than the 5.5 in. -
Review on Applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072 Review on applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof. P. J. Salunke2 1Student, Dept. of Civil Engineering, MGMCET, Maharashtra, India 2Head, Assistant Professor, Dept. of Civil Engineering, MGMCET, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper gives a brief introduction to the 1874. Use of steel led to the development of cantilever cantilever bridges and its evolution. Further in cantilever bridges. The world’s longest span cantilever bridge was built bridges it focuses on system and construction of balanced in 1917 at Quebec over St. Lawrence River with main span of cantilever bridges. The superstructure forms the dynamic 549 m. India can boast of one such long bridge, the Howrah element as a load carrying capacity. As box girders are widely bridge, over river Hooghly with main span of 457 m which is used in forming the superstructure of balanced cantilever fourth largest of its kind. bridges, its advantages are discussed and a detailed review is carried out. Concrete cantilever construction was first introduced in Europe in early 1950’s and it has since been broadly used in design and construction of several bridges. Unlike various Key Words: Bridge, Balanced Cantilever, Superstructure, bridges built in Germany using cast-in-situ method, Box Girder, Pre-stressing cantilever construction in France took a different direction, emphasizing the use of precast segments. The various advantages of precast segments over cast-in-situ are: 1. INTRODUCTION i. Precast segment construction method is a faster method compared to cast-in-situ construction method. -
Bridges and Applications Bridges and Applications Bridges and Applications Arch Bridges
10/23/2014 Bridges and Applications Bridges and Applications • Bridges are used to span across distances that are difficult to otherwise pass through. • Rivers • Deep gorges • Other roadways Bridges and Applications Arch Bridges • There are four basic types of bridges – Arch – Beam – Suspension – Cable‐stayed • Each type has different design and is therefore better suited to different applications 1 10/23/2014 Arch Bridges Arch Bridges • Instead of pushing straight down, the weight of an arch bridge is carried outward along the curve of the arch to the supports at each end. Abutments, carry • These supports, called the abutments, carry the load the load and keep the ends of the bridge from spreading outward. and keep the ends of the bridge from spreading outward Arch Bridges Arch Bridges • When supporting its own weight and the • Today, materials like steel and pre‐stressed weight of crossing traffic, every part of the concrete have made it possible to build longer arch is under compression. and more elegant arches. • For this reason, arch bridges must be made of materials that are strong under compression. New River Gorge, – Rock West Virginia. – Concrete 2 10/23/2014 Arch Bridges Arch Bridges • Usually arch bridges employ vertical supports • Typically, arch bridges span between 200 and called spandrels to distribute the weight of 800 feet. the roadway to the arch below. Arch Bridges One of the most revolutionary arch bridges in recent years is the Natchez Trace Parkway Bridge in Franklin, Tennessee, which was opened to traffic in 1994. It's the first American arch bridge to be constructed from segments of precast concrete, a highly economical material. -
Montreal, Quebec City & Canadian Maritimes
Tour Highlights Montreal, Quebec City & Canadian Maritimes AUGUST 6 - 16, 2020 Departure Point: Subject to Change with host TIM SEAMAN, Sioux City - KCAU TV 5993 Gordon Dr. KCAU 9 News Anchor Transportation provided to/from Eppley AirField Airport. Peggy's Cove DAY 7: CAPE BRETON ISLAND YOUR EXPERIENCE INCLUDES We depart Prince Edward Island by • All airfare, taxes & fuel surcharges ferry to Nova Scotia. Upon arrival • Guaranteed prices & low deposit in the city of Baddeck, take a tour • Holiday Vacations Tour Director through the life of its most famous • Expert local guides resident at the Alexander Graham • Motorcoach & professional driver Bell National Historic Site. The exhibits • Rail transportation showcase Bell’s many accomplish- • Baggage handling at hotels ments and inventions including the • $100 travel voucher for a future tour telephone. We check-in to our Baddeck 13 Excellent Meals Featuring accommodations for two nights. L,D • KCAU 9 Welcome Dinner at Érablière le TIM SEAMAN Chemin du Roy sugar shack THE CABOT TRAIL Tim Seaman celebrated 31 years at DAY 8: • Lunch at Fairmont Le Château Frontenac Today we travel along one of North KCAU in 2019. He became Sports • Dinner at Manoir Montmorency America’s most scenic roadways, Director in 1989. In 2012 he was • Farewell Lobster Dinner at Sou'Wester The Cabot Trail. On the way we pass promoted to news co-anchor, and in Peggy's Cove through Cape Breton Highlands currently shares the news desk with National Park, whose unspoiled B=Breakfast L=Lunch D=Dinner Bridget Bennett. natural beauty sets the stage for All Accommodations Featuring At the University of Northern Iowa, dramatic landscapes and incredible • at the Novotel Montreal Centre Tim received a Bachelor of Arts in Montreal, Quebec City & Canadian Maritimes coastal vistas. -
Modern Steel Construction 2009
Reprinted from 2009 MSC Steel Bridges 2009 Welcome to Steel Bridges 2009! This publication contains all bridge related information collected from Modern Steel Construction magazine in 2009. These articles have been combined into one organized document for our readership to access quickly and easily. Within this publication, readers will find information about Accelerated Bridge Construction (ABC), short span steel bridge solutions, NSBA Prize Bridge winners, and advancement in coatings technologies among many other interesting topics. Readers may also download any and all of these articles (free of charge) in electronic format by visiting www.modernsteel.org. The National Steel Bridge Alliance would like to thank everyone for their strong dedication to improving our nation’s infrastructure, and we look forward to what the future holds! Sincerely, Marketing Director National Steel Bridge Alliance Table of Contents March 2009: Up and Running in No Time........................................................................................... 3 March 2009: Twice as Nice .................................................................................................................. 6 March 2009: Wide River ..................................................................................................................... 8 March 2009: Over the Rails in the Other Kansas City ........................................................................ 10 July 2009: Full House ....................................................................................................................... -
Bridges Key Stage 2 Thematic Unit
Bridges Key Stage 2 Thematic Unit Supporting the Areas of Learning and STEM Contents Section 1 Activity 1 Planning Together 3 Do We Need Activity 2 Do We Really Need Bridges? 4 Bridges? Activity 3 Bridges in the Locality 6 Activity 4 Decision Making: Cantilever City 8 Section 2 Activity 5 Bridge Fact-File 13 Let’s Investigate Activity 6 Classifying Bridges 14 Bridges! Activity 7 Forces: Tension and Compression 16 Activity 8 How Can Shapes Make a Bridge Strong? 18 Section 3 Activity 9 Construction Time! 23 Working with Activity 10 Who Builds Bridges? 25 Bridges Activity 11 Gustave Eiffel: A Famous Engineer 26 Activity 12 Building a Bridge and Thinking Like an Engineer 28 Resources 33 Suggested Additional Resources 60 This Thematic Unit is for teachers of Key Stage 2 children. Schools can decide which year group will use this unit and it should be presented in a manner relevant to the age, ability and interests of the pupils. This Thematic Units sets out a range of teaching and learning activities to support teachers in delivering the objectives of the Northern Ireland Curriculum. It also supports the STEM initiative. Acknowledgement CCEA would like to thank The Institution of Civil Engineers Northern Ireland (ICE NI) for their advice and guidance in the writing of this book. Cover image © Thinkstock Do We Need Bridges? Planning together for the theme. Discovering the reasons for having, and the impact of not having, bridges. Writing a newspaper report about the impact of a missing bridge. Researching bridges in the locality. Grouping and classifying bridges. -
Bridges for Planes, Trains, but Not Automobiles by David A
bridges for Planes, Trains, buT noT auTomobiles By David A. Burrows, P.E., LEED AP BD+C ® British Airways 747 crossing beneath the Taxiway “R” bridge, June, 2012. Courtesy of City of Phoenix Aviation Department. Copyright s described in the August edition of STRUCTURE® maga- zine, Phoenix Sky Harbor International Airport opened the first stage of their automated transit system, PHX Sky Train™, on April 8, 2013. Thousands of passengers have already boarded the Sky Train and experienced the comfortable five A th minute ride from the 44 Street Station through the East Economy Lot Station, over Taxiway “R” (more than 100 feet above Sky Harbor Blvd.), ending at Terminal 4. The next phase, known as Stage 1A, is currently under con- struction and continues Sky Train’s route from Terminal 4 to Terminal 3. Scheduled to be open in early 2015, Stagemagazine 1A, similar to the Stage 1 construction,S faces theT task ofR crossing U an active C T U R E taxiway. Unlike the first Stage’s crossing above Taxiway “R”, the current phase of construction crosses beneath Taxiways “S” and “T”. Both Stages’ taxiway crossings presented several design and construction challenges. A US Airways jet passes beneath the Taxiway R crossing with the PHX Sky Train overhead. Courtesy of City of Phoenix Aviation Department. The World’s First In addition to the challenging geometry was the schedule constraint On Oct. 10, 2010, a celebration to mark the re-opening of Taxiway for constructing the bridge. Because the construction required the “R” was held by the City of Phoenix with members of the City’s taxiway to be closed, a limited shutdown period of six months was Aviation Department, designers, contractors and media watching possible due to airport operations. -
Simple Innovative Comparison of Costs Between Tied-Arch Bridge and Cable-Stayed Bridge
MATEC Web of Conferences 258, 02015 (2019) https://doi.org/10.1051/matecconf/20192 5802015 SCESCM 20 18 Simple innovative comparison of costs between tied-arch bridge and cable-stayed bridge Järvenpää Esko1,*, Quach Thanh Tung2 1WSP Finland, Oulu, Finland 2WSP Finland, Ho Chi Minh, Vietnam Abstract. The proposed paper compares tied-arch bridge alternatives and cable-stayed bridge alternatives based on needed load-bearing construction material amounts in the superstructure. The comparisons are prepared between four tied arch bridge solutions and four cable-stayed bridge solutions of the same span lengths. The sum of the span lengths is 300 m. The rise of arch as well as the height of pylon and cable arrangements follow optimal dimensions. The theoretic optimum rise of tied-arch for minimum material amount is higher than traditionally used for aesthetic reason. The optimum rise for minimum material amount parabolic arch is shown in the paper. The mathematical solution uses axial force index method presented in the paper. For the tied-arches the span-rise-ration of 3 is used. The hangers of the tied-arches are vertical-The tied-arches are calculated by numeric iteration method in order to get moment-less arch. The arches are designed as constant stress arch. The area and the weight of the cross section follow the compression force in the arch. In addition the self-weight of the suspender cables are included in the calculation. The influence of traffic loads are calculated by using a separate FEM program. It is concluded that tied-arch is a competitive alternative to cable-stayed bridge especially when asymmetric bridge spans are considered. -
A Look at Bridges: a Study of Types, Histories, and the Marriage of Engineering and Architecture Cody Chase Connecticut College
Connecticut College Digital Commons @ Connecticut College Architectural Studies Integrative Projects Art History and Architectural Studies 2015 A Look at Bridges: A Study of Types, Histories, and the Marriage of Engineering and Architecture Cody Chase Connecticut College Follow this and additional works at: http://digitalcommons.conncoll.edu/archstudintproj Recommended Citation Chase, Cody, "A Look at Bridges: A Study of Types, Histories, and the Marriage of Engineering and Architecture" (2015). Architectural Studies Integrative Projects. Paper 73. http://digitalcommons.conncoll.edu/archstudintproj/73 This Article is brought to you for free and open access by the Art History and Architectural Studies at Digital Commons @ Connecticut College. It has been accepted for inclusion in Architectural Studies Integrative Projects by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. CODY CHASE SENIOR INTEGRATIVE PROJECT: INDEPENDENT STUDY ARCHITECTURAL STUDIES CONNECTICUT COLLEGE 2015 A"LOOK"INTO"BRIDGES" A"Study"of"Types,"Histories,"and"the"Marriage"of" Engineering"and"Architecture" " Cody"Chase"‘15" Architectural"Studies"Major,"Art"History"Minor" Senior"IntegraHve"Project" " Why Bridges? Where to begin? TYPES OTHER • Arch • Glossary • Beam/Girder/Stringer • Materials • Truss • History of Failures • Suspension • Models • Cable-Stayed • Moveable Span What makes a bridge stand up? FORCES ***Compression: -
Arched Bridges Lily Beyer University of New Hampshire - Main Campus
University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter I: History -
Steel Bridge Design Handbook Vol. 13
U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Bracing System Design Publication No. FHWA-HIF-16-002 - Vol. 13 December 2015 FOREWORD This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged. The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively. The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processionals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McEleney with NSBA. Joseph L. Hartmann, PhD, P.E. Director, Office of Bridges and Structures Notice This document is disseminated under the sponsorship of the U.S. -
Steel Bridge Design Handbook
U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Design Example 4: Three-Span Continuous Straight Composite Steel Tub Girder Bridge Publication No. FHWA-HIF-16-002 - Vol. 24 December 2015 FOREWORD This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged. The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively. The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processionals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McEleney with NSBA. Joseph L. Hartmann, PhD, P.E.