Overhearing Cricket Love Songs

Total Page:16

File Type:pdf, Size:1020Kb

Overhearing Cricket Love Songs singing male crickets but also to recognize those dhe cricket and require no od~er cues, such as Overhearing Cricket Love that belong to her own species and, possibly, to smell. If dhe flies' ears are damaged, they cannot Songs assess the adequacy of the male by the quality of locate dhe sound. On the other hand, preliminary his song. For the fly, the task is also to find a observation suggests dhat they may be reluctant to cricket of the right species. The possibility that a deposit their larvae unless they actually find a Some flies bear an eary resemlance to their victims female fly also assesses the quality or health of her cricket at the source of the sound. In contrast, host before entrusting her brood to him seems slim, entomologist Tom Walker and his colleagues at the by Daniel Robert and Ronald R. Hoy but cannot be ruled out. University of Florida, Gainesville, have observed that a related species from Brazil, O. depleta, will For 200 million years, on any warm evening, male Our probing of its anatomy reveals that the hearing readily deposit from one to eight maggots right on crickets have been eagerly rubbing their forewings organ of O. ochracea is composed of a pair of very a piece of paper covering a loudspeaker. together, "singing" to attract mates. Early on, they thin membranes situated on the front of the thorax, were pioneers, inventing new ways to advertise near the neck and just behind the head. These So far, six members of the genus Ormia are known their presence to their fellow crickets. But about membranes act much as human eardrums do, to have ears for detecting their insect hosts, an forty million years ago, their serenades began to converting sound energy into mechanical ability they must have inherited from their attract some eavesdropping newcomers—tachinid movements. Each membrane is backed by an air common ancestor. In addition to field crickets, flies. For crickets, this was bad news. chamber and attached internally to a vibration their specific hosts include some katydids and Tachinid flies are parasitoids, parasites that use an sensor. The ear appears to have evolved from a mole crickets. Two genera of flesh flies have also animal host as a food source for their young, chordotonal sensory organ, a type of evolved, independently, a remarkably similar althongh the adults are freeliving. The female "mechanoreceptor." In nonhearing flies this organ hearing organ to listen for the singing of cicadas. tachinid fly, a tiny creature, deposits her eggs or serves as a sort of strain gauge that senses stresses larvae on or near a host insect, typically a species around the neck region and probably helps monitor To be a successful bacterium, fungus, animal, or much larger than herself, such as a beetle or a the movement and posture of the head and front plant depends on detecting crucial features of the caterpillar. The larvae then burrow inside and legs. environment. Survival often requires diverse gorge themselves on the host's generous muscular sensory capacities. From an evolutionary mass or other tissues. After a week or so, they Although an exceptional anatomical development perspective, there is always a potential advantage emerge to pupate. This strategy is very successful, among flies, the tiny ears resemble those found in in doing something a little differently. When some judging by the abundance of tachinid fly species various other insects, including crickets. In all paräsitoid flies gained ears, a whole new sensory (8,000 have been identified worldwide, 1,000 in cases that have been studied, insect ears seem to world became accessible to them. They reaped the North America alone). The family Tachinidae is have evolwd from such chordotonal organs. In advantage of locating a dispersed, concealed host. the second largest in the order of true flies, crickets, for example, ears evolved from sensors Other flies could find crickets by sight or smell, Diptera, after the very diverse Tipulidae, or crane situated on the tibia of the front legs, which but might miss some that are easily located by flies. Another successful, large family of originally functioned merely to detect low- sound. The hearing flies filled a new niche, where parasitoids is the Sarcophagidae, or flesh flies, frequency ground vibrations. Various lines of competition was reduced and resources lay which counts some 2,000 species worldwide. evidence suggest that the original sensory structure untapped. was duplicated, and that this duplicate gained a separate function, the sensing of air vibrations. As Despite the advantage hearing has conferred on in other insects with ears, these structures have certain species of parasitoid flies, the phenomenon nothing in common with the feathery antennae thät is not widespread. Shelley Adamo, of Cornell enable some insects (mosquitoes, for example) to University, who studies the effects of parasitism on detect low-pitched sounds, such as the buzzing of cricket behavior, physiology, and reproductive other insects, at close range. success, has concluded that at least in North America, relatively few singing insect species have The fly's ear resembles the cricket's not only in bodies large enough to support a tachinid structure and sensory origin but also in sensitivity. infestation. Probably more remain to be discovered One way to understand a fly's sensitivity to sound in the tropics, where singing insects are is to measure the electrical activity of the sensory numerous— and often large. nerves leading from its ears to its central nervous As far as we know, the vast majority of tachinid system. To determine which pitches O. ochracea is Many questions remain to be explored in the flies (lilce nearly all flies) are deaf to high-pitched most sensitive to, we inserted tiny recording relationship between ear-equipped tachinid flies sounds, such as the chirping and trilling of electrodes into dhe thorax, at dhe base of dhe and their hosts. What effect do the parasitoids have crickets, and find their hosts by sight and smell. auditory nerves, and tested dhe reaction to on the cricket population as a whole? How But a few species of tachinid flies have evolved the computer-generated simulations of the cricket's detrimental is infestation to a male cricket's ability ability to home in on a cricket's chirp, getting the song. to leave offspring? And will the cricket's tendency drop on their viclim, no matter how well it may be to chirp eventually be eliminated by natural concealed by vegetation or the darkness of night. Our experiments have demonstrated that this tiny selection? fly is most sensitive to sounds at dhe frequency of Among them is the fly Ormia ochracea, which five kilohertz (a litde above dhe highest pitch on Some cricket species have lost their ability to sing, lives along the gulf coast from Florida to Texas, dhe piano), a pitch close to d~e frequency dbat and we and others suspect that parasitism played a preying on the southwestern or southeastern field dominates the cricket's song. This is a striking key role in this loss. Males of the species Gryllus cricket. Diving out of the night sky, the fly example of a phenomenon known as convergent ovisopis, whose common name is the taciturn field deposits one or more tiny maggots on or near a evolution, where superficially similar structures cricket, lack a long-range call, although they chirping male cricket and takes off. The active evolve in distandy related organisms as adaptations conserve enough of the sonnd-producing wing maggots latch on to the cricket and penetrate it. to similar requirements or circumstances. anatomy to scrape out a short-range courtship song (They may even end up parasitizing a female if a female wanders into range. According to Tom cricket attracted by the same song.) By the time the The fly's sensitivity—and especially dhat of dhe Walker, who has studied them, they do not seem to maggots have matured and are ready to emerge, female fly—even surpasses dhe cricket's. We have evolved any other long-range signals, such as the cricket is at death's door. estimate d~at a female cricket can detect a male chemicals. An entirely mute species (which has cricket from at least twenty yards away, while dhe also lost its ears) is Larandeicas bicolor of As biologists interested in the evolution fly can hear it from twice dhat distance. (Humans southern Africa. Unlike its singing relatives, it of sensory systems, we wanted to know how—and we tested are even more sensitive, discerning dhe attracts a female's attention with its brightly how well—this species of tachinid fly could hear cricket song at sixty yards—but they are not as colored wings. Crickets may never regain the the field crickets. In the course of their lives, both quick and precise at locating it in the grassy freedom of action they lost when tachinid flies the female cricket and female fly faee the same meadows, perhaps for lack of practice.) arose forty million years ago. But if the going gets reproductive problem: finding a male cricket too tough, they may evolve some new tricks of singing in the dark. The female cricket uses her In field experiments using loudspeakers, we have their own. sense of hearing not only to detect and locate shown tbat dhe flies are attracted by dhe sound of.
Recommended publications
  • Are Biologicals Smart Mole Cricket Control?
    Are biologicals smart mole cricket control? by HOWARD FRANK / University of Florida ost turf managers try to control mole faster than the biopesticides, but the biopesticides cricket pests with a bait, or granules or affect a narrower range of non-target organisms and liquid containing something that kills are more environmentally acceptable. The "biora- them. That "something" may be chemi- tional" chemicals are somewhere in between, be- M cause they tend to work more slowly than the tradi- cal materials (a chemical pesticide) or living biologi- cal materials (a biopesticide). tional chemicals, and to have less effect on animals Some of the newer chemical materials, called other than insects. "biorationals," are synthetic chemicals that, for ex- Natives not pests ample, mimic the action of insects' growth hor- The 10 mole cricket species in the U.S. and its mones to interfere with development. territories (including Puerto Rico and the Virgin Is- The biological materials may be insect-killing ne- lands) differ in appearance, distribution, behavior matodes (now available commercially) or fungal or and pest status. bacterial pathogens (being tested experimentally). In fact, the native mole crickets are not pests. These products can be placed exactly where they Our pest mole crickets are immigrant species. are needed. In general, the chemical pesticides work The three species that arouse the ire of turf man- agers in the southeastern states all belong Natural enemies to the genus Scapteriscus. They came from Introducing the specialist natural ene- South America, arriving at the turn of the mies from South America to the southeast- century in ships' ballast.
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Ohara\Catalogues\World Genera\Tach
    WORLD GENERA OF THE TACHINIDAE (DIPTERA) AND THEIR REGIONAL OCCURRENCE by James E. O’Hara1 23 February 2005 Version 1.0 ________________________ 1 Invertebrate Biodiversity, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6. E-mail: [email protected]. TABLE OF CONTENTS Click on a page number to go to the page indicated Foreword ............................................................................................................................... 2 Biogeographic summary ....................................................................................................... 3 Acknowledgements ............................................................................................................... 3 Table of genera and their regional occurrence ...................................................................... 4 References ........................................................................................................................... 66 Select a letter to go directly to corresponding genus in list of world genera A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z FOREWORD The following table is a listing of the tachinid genera of the world with their regional occurrence. It was compiled from the generic names and distributions given in the most recent regional catalogues, as listed here, and brought up-to-date using information from subsequently published papers. Regional catalogues Nearctic Region O’Hara & Wood (2004) Neotropical
    [Show full text]
  • Mole Crickets Scapteriscus Spp
    Mole Crickets Scapteriscus spp. Southern mole cricket, Scapteriscus borellii Tawny mole cricket, Scapteriscus vicinus DESCRIPTION OF INSECT All stages live in the soil and are rarely see on the surface. Immature stage Nymphs of both species are similar in appearance to adults, but lack wings. Nymphs proceed through 8-10 instars ranging in size from 0.2 to 1.25 inches in length. Each instar is progressively larger with wing buds apparent on later instars. Color varies from gray to brown. Pronotum (large shield behind head) with distinctive mottling or spots, depending on species and location. Mature stage Adults are somewhat cylindrically shaped, light colored crickets 1.26 to 1.38 inches in length. Adults have two pairs of wings, but only fly at night during two brief flight periods in fall and early spring. Spring flights are generally more extensive than fall flights. Damaging stage(s) Both nymphs and adults cause damage Predictive models (degree day, plant phenology, threat temperatures, other) Eggs being to hatch at threat temperatures of 65° F and higher (spring/early summer in most locations). Egg-laying and hatch timing are affected by soil moisture. Threat temperatures can be used to trigger preventive treatments. See the article, “Threat temperatures” for more information. Preventive treatments should be applied prior to egg-hatch (early June) or at the time of peak hatch (last week of June, first week of July in most years and locations). Weekly soap flushes in June and early July is the best method to determine when hatch is occurring, and the best time to treat.
    [Show full text]
  • Household Insects of the Rocky Mountain States
    Household Insects of the Rocky Mountain States Bulletin 557A January 1994 Colorado State University, University of Wyoming, Montana State University Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Milan Rewerts, interim director of Cooperative Extension, Colorado State University, Fort Collins, Colorado. Cooperative Extension programs are available to all without discrimination. No endorsement of products named is intended nor is criticism implied of products not mentioned. FOREWORD This publication provides information on the identification, general biology and management of insects associated with homes in the Rocky Mountain/High Plains region. Records from Colorado, Wyoming and Montana were used as primary reference for the species to include. Mention of more specific localities (e.g., extreme southwestern Colorado, Front Range) is provided when the insects show more restricted distribution. Line drawings are provided to assist in identification. In addition, there are several lists based on habits (e.g., flying), size, and distribution in the home. These are found in tables and appendices throughout this manual. Control strategies are the choice of the home dweller. Often simple practices can be effective, once the biology and habits of the insect are understood. Many of the insects found in homes are merely casual invaders that do not reproduce nor pose a threat to humans, stored food or furnishings. These may often originate from conditions that exist outside the dwelling. Other insects found in homes may be controlled by sanitation and household maintenance, such as altering potential breeding areas (e.g., leaky faucets, spilled food, effective screening).
    [Show full text]
  • Biologically Inspired Antenna Array Design Using Ormia Modeling1 2 3 4
    Biologically inspired antenna array design 1 2 3 4 using Ormia modeling Murat Akcakaya1 , Carlos Muravchik2 and Arye Nehorai3 1 Electrical and Computer Engineering Department University of Pittsburgh Pittsburgh, PA, USA email: [email protected] 2 LEICI, Departamento Electrotecnia, Universidad Nacional de La Plata, La Plata, Argentina email: [email protected] 3 Department of Electrical and Systems Engineering Washington University in St. Louis, St. Louis, MO, USA email: [email protected] 1 This chapter is based on the dissertation work completed by Dr. Murat Akcakaya when he was in Washington University in St. Louis 2 Based on Akcakaya, M. Muravchik, C. M and Nehorai, A. (2011) ‘ Biologically inspired coupled antenna array for direction of arrival estimation’, IEEE Transactions on Signal Processing, 59 (10), 4795-4808. 3 Based on Akcakaya, M and Nehorai, A. (2010) ‘ Biologically inspired coupled antenna beampattern design’ , Bioinspiration and Biomimetics, 5 (4) , 046003. 4 The work of Dr. Arye Nehorai was funded by NSF grant CCF-0963742. 1 Abstract This chapter describes the design of a small-size antenna array having high direction of arrival (DOA) estimation accuracy and radiation performance, inspired by female Ormia ochraceas’ coupled ears. Female Ormias are able to locate male crickets' call accurately, for reproduction purposes, despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, modeled by a pair of differential equations. In this chapter, we first solve the differential equations governing the Ormia ochracea's ear response, and propose to convert the response to pre-specified radio frequencies.
    [Show full text]
  • Visual Distance Discrimination Between Stationary Targets in Praying Mantis: an Index of the Use of Motion Parallax
    The Journal of Experimental Biology 198, 2127–2137 (1995) 2127 Printed in Great Britain © The Company of Biologists Limited 1995 VISUAL DISTANCE DISCRIMINATION BETWEEN STATIONARY TARGETS IN PRAYING MANTIS: AN INDEX OF THE USE OF MOTION PARALLAX MICHAEL POTESER AND KARL KRAL* Institut für Zoologie, Karl-Franzens-Universität, Universitätsplatz 2, A-8010 Graz, Austria Accepted 7 June 1995 Summary 1. When larvae of the praying mantis Polyspilota sp. and It is supposed that the distance measurement involves the Tenodera sinensis want to leave an exposed position and larger and faster retinal image shifts that near, as opposed can choose to move between stationary objects at different to more distant, objects evoke. distances, they usually choose the nearest. Their ability to 4. Mantid larvae can distinguish a black-and-white select the nearest object is greatest when the background rectangle in the foreground from a black-and-white striped has horizontal stripes and is least when it has vertical background, even when both are similar with respect to stripes. Object preference is based on a successive distance luminance, contrast and texture. The ability to distinguish comparison, which may involve content-related memory between figures and background could be explained by processes. motion parallaxes, i.e. by the fact that during peering 2. Mantid larvae can determine the absolute distance to movements the nearer object moves faster and by a larger a stationary object. Vertical contrasting borders play an angle than the background structure. important role in this process. 5. From birth onwards, even when the eyes have yet to 3. Side-to-side head movements (peering) are directly develop foveal specialization, mantids are capable of this involved in the distance measurement, as shown (i) by the visually controlled behaviour.
    [Show full text]
  • Wax, Wings, and Swarms: Insects and Their Products As Art Media
    Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects.
    [Show full text]
  • Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815)
    Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2017 Etienne Stockland All rights reserved ABSTRACT Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Naturalists, state administrators and farmers in France and its colonies developed a myriad set of techniques over the course of the long eighteenth century to manage the circulation of useful and harmful insects. The development of normative protocols for classifying, depicting and observing insects provided a set of common tools and techniques for identifying and tracking useful and harmful insects across great distances. Administrative techniques for containing the movement of harmful insects such as quarantine, grain processing and fumigation developed at the intersection of science and statecraft, through the collaborative efforts of diplomats, state administrators, naturalists and chemical practitioners. The introduction of insectivorous animals into French colonies besieged by harmful insects was envisioned as strategy for restoring providential balance within environments suffering from human-induced disequilibria. Naturalists, administrators, and agricultural improvers also collaborated in projects to maximize the production of useful substances secreted by insects, namely silk, dyes and medicines. A study of
    [Show full text]
  • Mole Cricket: Scapteriscus Vicinus Shortwinged Mole Cricket: Scapteriscus Abbreviatus
    Tawny Mole Cricket: Scapteriscus vicinus Shortwinged Mole Cricket: Scapteriscus abbreviatus Biology & Lifecycle: Adults and larger nymphs chew on stems of seedlings and smaller plants at the soil surface. The tawny mole cricket has one generation each year and overwinters as adults, which lay eggs in April through early June. Nymphs grow slowly through the summer months and start becoming adults in September. The shortwinged mole cricket is almost restricted to coastal areas. Most eggs are laid in late spring through early summer. Females of both species lay clutches of eggs in underground egg chambers. Environmental Factors: Tawny and shortwinged mole crickets are present year-around, with adults and large nymphs overwintering but inactivated by cold temperatures and drought (they burrow deeper underground). Irrigation during drought allows them to be active. Flooding forces them to migrate to higher ground. Adult: Adults are large, about 1¼ inches, with wings longer than body (tawny mole cricket (Figure 3)) or very much shorter than body (shortwinged mole cricket (Figure 1)). Both adults and nymphs have enlarged and toothed forelegs for digging; expanded femurs (base of the hind legs) for jumping, although only nymphs jump. All species have soft bodies, with the middle body section protected by a hardened cover (pronotum). Immature: Nymphs range from less than 1/8 inch at hatching to about 1 inch several months later, resembling the adults but without trace of wings in the first 4 instars and with small wing buds in later instars. The number of molts varies from 6 to 9 (Figure 5). Host range: Both species attack seedlings of eggplant, sweet pepper, tobacco, tomato and cabbage.
    [Show full text]
  • Insect-Musicians and Cricket Champions of China
    Insect-Musicians and Cricket Champions of China BY BERTHOLD LAUFER Curator op Anthropology 12 Plates in Photogravure Anthropology Leaflet 22 FIELD MUSEUM OF NATURAL HISTORY CHICAGO 1927 The Anthropological Leaflets of Field Museum are designed to give brief, non-technical accounts of some of the more interesting beliefs, habits and customs of the races whose life is illustrated in the Museum's exhibits. LIST OF ANTHROPOLOGICAL LEAFLETS ISSUED TO DATE 1. The Chinese Gateway $ .10 2. The Philippine Forge Group 10 3. The Japanese Collections 25 4. New Guinea Masks 25 5. The Thunder Ceremony of the Pawnee 25 6. The Sacrifice to the Morning Star by the Skidi Pawnee 10 7. Purification of the Sacred Bundles, a Ceremony of the Pawnee 10 8. Annual Ceremony of the Pawnee Medicine Men . .10 9. The Use of Sago in New Guinea 10 10. Use of Human Skulls and Bones in Tibet 10 11. The Japanese New Year's Festival, Games and Pastimes 25 12. Japanese Costume 25 13. Gods and Heroes of Japan 25 14. Japanese Temples and Houses 25 15. Use of Tobacco among North American Indians . .25 16. Use of Tobacco in Mexico and South America . .25 17. Use of Tobacco in New Guinea 10 18. Tobacco and Its Use in Asia 25 19. Introduction of Tobacco into Europe 25 20. The Japanese Sword and Its Decoration 25 in 21. Ivory China , 75 22. Insect-Musicians and Cricket Champions of China . .50 23. Ostrich Egg-shell Cups of Mesopotamia and the Ostrich in Ancient and Modem Times ... .50 24.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]