Abrupt Temperature Change and a Warming Hiatus from 1951 to 2014 in Inner Mongolia, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategic Development Outline for Economic Cooperation Between the People's Republic of China and Mongolia
STRATEGIC DEVELOPMENT OUTLINE FOR ECONOMIC COOPERATION BETWEEN THE PEOPLE’S REPUBLIC OF CHINA AND MONGOLIA (PROJECT AREA: XINGANMENG PREFECTURE IN THE INNER MONGOLIA AUTONOMOUS REGION OF THE PRC AND THE PROVINCES OF DORNOD, HENTIY, SUHBAATAR OF MONGOLIA ) i This publication was prepared by Asian Development Bank consultants under the guidance of Bank staff. The findings, interpre- tations, and conclusions expressed in it do not necessarily represent the views of the Bank or those of its member countries. The Asian Development Bank does not guarantee the accuracy of the data in- cluded in this publication and accepts no responsibility whatsoever for any consequences of their use. @ Asian Development Bank 2002 ISBN No. 971-561-412-4 Stock No. 110501 Published by the Asian Development Bank P.O. Box. 789, 0980 Manila, Philippines For more information on ADB, visit http:\\www.adb.org ii STRATEGIC DEVELOPMENT OUTLINE FOR ECONOMIC COOPERATION BETWEEN THE PEOPLE’S REPUBLIC OF CHINA AND MONGOLIA (PROJECT AREA: XINGANMENG PREFECTURE IN THE INNER MONGOLIA AUTONOMOUS REGION OF THE PRC AND THE PROVINCES OF DORNOD, HENTIY, SUHBAATAR OF MONGOLIA ) iii Message from the People’s Republic of China n line with the open door policy, the Government of options for economic cooperation in a specific project the People’s Republic of China regards promotion area covering Xinganmeng Prefecture of Inner Mongolia Iof economic cooperation with neighboring coun- Autonomous Region and the three eastern provinces in tries as a special means to accelerate growth and eco- Mongolia. As revealed by the strategic study, the two nomic development of the local economy in the provinces countries have good opportunity to cooperate in the and autonomous regions that share border with other project area in the sectors of agriculture, mining, tour- countries. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Responses of Carbon Isotope Ratios of C3 Herbs to Humidity Index in Northern China*
Turkish Journal of Earth Sciences Turkish J Earth Sci (2014) 23: 100-111 http://journals.tubitak.gov.tr/earth/ © TÜBİTAK Research Article doi:10.3906/yer-1305-2 Responses of carbon isotope ratios of C3 herbs to humidity index in northern China* 1,2,3, 2 2 2 1 Xianzhao LIU *, Qing SU , Chaokui LI , Yong ZHANG , Qing WANG 1 College of Geography and Planning, Ludong University, Yantai, P.R. China 2 College of Architecture and Urban Planning, Hunan University of Science & Technology, Xiangtan, P.R. China 3 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Water and Soil Conservation, Chinese Academy of Sciences, Yangling, P.R. China Received: 04.05.2013 Accepted: 02.09.2013 Published Online: 01.01.2014 Printed: 15.01.2014 Abstract: Uncertainties would exist in the relationship between δ13C values and environmental factors such as temperature, resulting in unreliable reconstruction of paleoclimates. It is therefore important to establish a rational relationship between plant δ13C and a proxy for paleoclimate reconstruction that can comprehensively reflect temperature and precipitation. By measuring the δ13C of a large 13 number of C3 herbaceous plants growing in different climate zones in northern China and collecting early reported δ C values of C3 13 herbs in this study area, the spatial features of δ C values of C3 herbs and their relationships with humidity index were analyzed. The 13 δ C values of C3 herbaceous plants in northern China ranged from –29.9‰ to –25.4‰, with the average value of –27.3‰. The average 13 δ C value of C3 herbaceous plants increased notably from the semihumid zone to the semiarid zone to the arid zone; the variation 13 ranges of δ C values of C3 plants in those 3 climatic zones were –29.9‰ to –26.7‰ (semihumid area), –28.4‰ to –25.6‰ (semiarid 13 area), and –28.0‰ to –25.4‰ (arid area). -
Inner Mongolia Sustainable Cross-Border Development Investment Program
Report and Recommendation of the President to the Board of Directors Project Number: 51192-001 September 2020 Proposed Multitranche Financing Facility People’s Republic of China: Inner Mongolia Sustainable Cross-Border Development Investment Program Distribution of this document is restricted until it has been approved by the Board of Directors. Following such approval, ADB will disclose the document to the public in accordance with ADB’s Access to Information Policy. CURRENCY EQUIVALENTS (as of 25 August 2020) Currency unit – yuan (CNY) CNY1.00 = $6.9196 $1.00 = €0.8483 €1.00 = $1.1788 ABBREVIATIONS ADB – Asian Development Bank ALE – agricultural leading enterprise BCP – border crossing point CAREC – Central Asia Regional Economic Cooperation COVID-19 – coronavirus disease ECZ – economic cooperation zone EIRR – economic internal rate of return ESMS – environmental and social management system FAM – facility administration manual FIL – financial intermediation loan FIRR – financial internal rate of return GDP – gross domestic product IMAR – Inner Mongolia Autonomous Region IMARG – Government of Inner Mongolia Autonomous Region km – kilometer MFF – multitranche financing facility PAP – poverty alleviation program PIE – project implementing entity PRC – People’s Republic of China SME – small and medium-sized enterprises SOE – state-owned enterprise NOTE In this report, “$” refers to United States dollars. Vice-President Ahmed M. Saeed, Operations 2 Director General James Lynch, East Asia Department (EARD) Director Xiaoqin Fan, Public Management, Financial Sector, and Regional Cooperation Division (EAPF), EARD Team leader Seung Min Lee, Senior Financial Sector Specialist, EAPF, EARD Deputy Team Aoxue Ren, Senior Procurement Officer, People’s Republic of China Leader Resident Mission, EARD Team members Bo An, Public Management Specialist, EAPF, EARD Frederic Asseline, Principal Climate Change Specialist (Climate Finance), Sustainable Development and Climate Change Department (SDCC) Ma. -
Grand Design for Future Development in Northeast Asia by Batbold Zagdragchaa (Mongolia)
Comments for the Session 1: Grand Design for Future Development in Northeast Asia by Batbold Zagdragchaa (Mongolia) Since Mongolia is a small developing country, its active participation in Northeast Asia’s integration is vital. At present, due to its economic structure and development level, Mongolia cannot participate in the NEA regional integration to the full extent. Particularly, weak development of infrastructure, roads and transportation networks causes extensive barriers and problems, which in combination with Mongolia being landlocked, negatively influences its competitiveness. Therefore, if transportation infrastructure is improved in connnection with the needs of regionalization, Mongolia can become the most convenient transport corridor and transit port connecting the NEA with Europe and Central Asia. As pointed out in the ”Grand design,” in order to build the industrial network and economic bloc of Northeast Asia, the improvement of a regional transport network is important. Recognizing this problem, Mongolia is gradually improving its transportation infrastructure. Mongolia has been building paved roads following the UNESCAP Asian Highway project. 200 km of paved road is expected to be completed this year through AH3 and another 454 km in the coming 3-4 years. In this case, the Mongolian portion of AH3 will be paved fully and road transportation from Mongolia to Beijing or the seaport of Tianjin will become possible. AH32 is most important for Mongolia’s integration into Northeast Asia.This horizontal line starts from Sonbong and passes through Northeast China and ends in the western part of Mongolia. The length of its Mongolian portion is 2325 km. AH32 crosses the Mongolian border from the Chinese border city of Arxan across the Nomrog river. -
Impact of China's One Belt One Road Initiative at Different Geographical Scales
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2019 Impact of China's One Belt One Road Initiative at Different Geographical Scales Yuxiang Hou College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Human Geography Commons, International Relations Commons, and the Political Economy Commons Recommended Citation Hou, Yuxiang, "Impact of China's One Belt One Road Initiative at Different Geographical Scales" (2019). Undergraduate Honors Theses. Paper 1280. https://scholarworks.wm.edu/honorstheses/1280 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ii Abstract China’s One Belt One Road (OBOR), proposed in 2013, is an ambitious initiative that aims at enhancing connectivity and integrating economies across countries. This thesis, by tracing its mechanism at three different geographical scales---global, national, and local, analyzes its multidimensional impact at each scale. It shows that at a global scale, OBOR is in the form of competing narratives over its global impact and nature; at a national scale, OBOR is represented as economic corridors, aiming at improving infrastructures, increasing multilateral trade, integrating financial systems, and strengthening cultural ties; and at -
Surveillance of Borrelia Miyamotoi
Gaowa et al. Parasites Vectors (2021) 14:368 https://doi.org/10.1186/s13071-021-04809-z Parasites & Vectors RESEARCH Open Access Surveillance of Borrelia miyamotoi-carrying ticks and genomic analysis of isolates in Inner Mongolia, China Gaowa1* , Wulantuya1, Kozue Sato2, Dan Liu1, Yunhong Cui1, Xuhong Yin1, Lihua Zhang1, Hong Li1, Tingfu Wang1, Rongxin Liu1, Lijing Wu1, Saixia Lu1, Ting Gao1, Zitong Zhang1, Minzhi Cao3, Guodong Wang4, Chunpu Li4, Dacheng Yan4, Norio Ohashi5, Shuji Ando6 and Hiroki Kawabata2* Abstract Background: Borrelia miyamotoi is a newly described relapsing fever spirochete transmitted by ixodid tick species. Little is known about the prevalence of B. miyamotoi infections in humans and ticks in Inner Mongolia, China. There- fore, we investigated the prevalence of B. miyamotoi in Ixodes persulcatus ticks, and we aimed to isolateB. miyamotoi from I. persulcatus from four regions of Greater Khingan, Inner Mongolia, China. Methods: From May to June each year during the period 2016–2019, host-seeking adult I. persulcatus ticks were col- lected from vegetation. Genomic DNA was prepared from half of each tick body for PCR template, and the remaining half was used to cultivate B. miyamotoi in BSK-M medium. We employed quantitative real-time PCR (qPCR) to detect Borrelia DNA in the ticks and to calculate the prevalence of B. miyamotoi and infections with other borreliae. For char- acterization of the isolated B. miyamotoi, we performed draft genome sequencing and multilocus sequencing analysis (MLSA). Results: A total of 2656 adult I. persulcatus ticks were collected. The overall prevalence of relapsing fever (RF) bor- reliae in ticks was 5.0% (134/2656) and that of Lyme disease (LD) borreliae was 43.8% (1164/2656). -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ...................................................................................................................................................... -
Case Studies on Biofuel Supply Logistics for Forest Bioenergy in China
id246804062 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com BBiiooTTISSNe e: 097cc4 - h7h435 nnooVlloluoome 8gg Issuyye 10 An Indian Journal FULL PAPER BTAIJ, 8(10), 2013 [1357-1361] Case Studies on biofuel supply logistics for forest bioenergy in China Lan Zhang, Caihong Zhang*, Liangzhen Zang School of Economics and Management, Beijing Forestry University, No.35 Qinghuadonglu, Beijing, (CHINA) E-mail : [email protected] ABSTRACT KEYWORDS In China, the poor supply logistic and the high feedstock cost are the Supply logistics; most critical constraints to the development of forest bioenergy. The aim Bioenergy; of this study is to identify the supply logistic from forest land to the final Forest; delivery for bioenergy utilization. A case study approach was used to Case study; collect the relevant information and data. And two different supply logistics China. of wood biofuel were designed for two locations in Inner Mongolia, one was from collective forests and the other was from state-owned forests. 2013 Trade Science Inc. - INDIA INTRODUCTION Supply logistics have been well documented in North America and European countries, focusing on supply Bioenergy is considered to be a fossil fuel that sub- system design with affecting factors of harvesting and stitutes to offset greenhouse gas (GHG) emissions. In transportation, models of estimating supply chains and China, the development of forest bioenergy is emerging costs[6, -8]. Whereas in China, only limited information is ’s energy chal- as a part of the solution to the country available for the supply logistics of forest biomass using lenges. -
The Route of Development in Intra-Regional Income Equality Via High-Speed Rail: Evidence from China
The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Wenjing YU, China Academy for Rural Development, Zhejiang University [email protected] Yansang YAO, China Academy for Rural Development, Zhejiang University [email protected] Selected Paper prepared for presentation at the 2019 Agricultural & Applied Economics Association Annual Meeting, Atlanta, GA, July 21 – July 23 Copyright 2019 by [Wenjing Yu, Yansang Yao]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Abstract This paper mainly studies how the bullet trains, a new generation of vehicles, are associated with income inequality in China for the years between 2008 and 2018. Gini coefficients are used to measure the income inequality from county level, and within urban and rural areas of China. A staggered Difference-in-Difference (DID) approach is taken to identify the causal effect of high-speed rail on intra-regional income inequality. Factors other than transportation are also considered in our regression model, including a few social variables and major economic indicators. It is found that the Gini coefficient of reginal economy would rise by 0.0327 in average when new high-speed railway stations are opened, which means that the intra-regional income inequality is being exacerbated. We also find that the treatment drawn by high-speed rail system is not uniform in different regions, and the greatest impact was set on the western region. -
Inner Mongolia Sustainable Cross Border Development Investment Program (RRP PRC 51192) SUPPLEMENTARY DOCUMENT to the ECONOMIC ANALYSIS
Inner Mongolia Sustainable Cross Border Development Investment Program (RRP PRC 51192) SUPPLEMENTARY DOCUMENT TO THE ECONOMIC ANALYSIS 1. Introduction and background 1.1 PRC–Mongolia Trade and Cooperation 1. Since the establishment of trade relations between the People’s Republic of China (PRC) and Mongolia in 1951, the two countries signed a border trade treaty in 1962. The two countries have conducted in-depth cooperation in economic and trade aspects, and their scope has continued to expand. PRC has become Mongolia's largest trading partner. In 2018, the bilateral trade volume between PRC and Mongolia reached $8.54 billion, of which the PRC’s export volume was $1.99 billion and the import value was $6.54 billion. Inner Mongolia Autonomous Region (IMAR) has accounted for 70% of Mongolia’s import trade from PRC, and the IMAR’s import and export trade to Mongolia accounts for more than 40% of PRC-Mongolia trade. 2. According to the statistics of PRC–Mongolia economic and trade cooperation (Table 1), PRC continues to maintain Mongolia's largest trading partner, largest export market and largest import market in 2017. Mongolia's exports to PRC mainly include mineral products, animal fur raw materials and their finished products. Mongolia's imports from PRC mainly include gasoline, diesel, food, machinery and equipment, summarized is Table 1. Table 1: PRC–Mongolia Economic and Trade Cooperation Data for 2012-2017 Main Indicator 2013 2014 2015 2016 2017 China export ($ billion) 2.450 2.216 1.572 0.988 1.248 China import ($ billion) 3.506 5.093 3.779 3.619 5.118 Source: China Customs Statistical Data. -
The World Bank Scoping Study of Biomass
The World Bank Public Disclosure Authorized Scoping Study of Biomass Energy Development in Inner Mongolia, China Public Disclosure Authorized Asia Alternative Energy (ASTAE), the World Bank November 2005 Public Disclosure Authorized Public Disclosure Authorized Scoping Study of Biomass Energy Development in Inner Mongolia, China CONTENT ACKNOWLEGEDMENTS ................................................................................................4 ABBREVIATIONS AND ACRONYMS............................................................................5 1. SUMMARY AND MAIN FINDINGS.......................................................................6 1.1. Objective of this Project...................................................................................15 1.2. Biomass Resources in China............................................................................15 1.3. Biomass Energy Development Planning in China...........................................16 1.4. Biomass Resource Potential in Inner Mongolia...............................................16 1.5. Scope of This Report .......................................................................................16 2. METHODOLOGY AND KEY ASSUMPTIONS....................................................18 2.1. Methodology....................................................................................................18 2.2. Key Assumptions.............................................................................................19 2.3. Limitations of this Study..................................................................................20