214621Orig1s000

Total Page:16

File Type:pdf, Size:1020Kb

214621Orig1s000 CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 214621Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA/BLA Multi-disciplinary Review and Evaluation: NDA 214, 621 Relugolix NDA/BLA Multi-disciplinary Review and Evaluation Disclaimer: In this document, the sections labeled as “The Applicant’s Position” are completed by the Applicant, which do not necessarily reflect the positions of the FDA. Application Type NDA Application Number(s) NDA 214621 Priority or Standard Priority Submit Date(s) April 20, 2020 Received Date(s) April 20, 2020 PDUFA Goal Date December 20, 2020 Division/Office OND/CDER/OOD/DO1 Review Completion Date Established Name Relugolix (b) (4) (Proposed) Trade Name Pharmacologic Class Gonadotropin-releasing hormone (GnRH) receptor antagonist Code name TAK-385 Applicant Myovant Sciences, Inc. Formulation(s) oral tablet Dosing Regimen One time loading dose of 360 mg followed by 120 mg daily Applicant Proposed RELUGOLIX is a gonadotropin-releasing hormone Indication(s)/Population(s) (GnRH) antagonist indicated for the treatment of patients with advanced prostate cancer. Recommendation on Regular approval Regulatory Action Recommended RELUGOLIX is a gonadotropin-releasing hormone Indication(s)/Population(s) (GnRH) antagonist indicated for the treatment of (if applicable) patients with advanced prostate cancer. 1 Version date: January 2020 (ALL NDA/ BLA reviews) Disclaimer: In this document, the sections labeled as “The Applicant’s Position” are completed by the Applicant and do not necessarily reflect the positions of the FDA. Reference ID: 4719259 NDA/BLA Multi-disciplinary Review and Evaluation: NDA 214, 621 Relugolix Table of Contents Reviewers of Multi-Disciplinary Review and Evaluation ................................................... 8 Additional Reviewers of Application ................................................................................. 8 Glossary ...................................................................................................................... 9 1 Executive Summary .................................................................................... 12 1.1. Product Information ................................................................................... 12 1.2. Conclusions on the Substantial Evidence of Effectiveness ......................... 12 1.3. Benefit-Risk Assessment (BRA) ................................................................... 15 1.4. Patient Experience Data ............................................................................. 19 2 Therapeutic Context ................................................................................... 21 2.1. Analysis of Condition .................................................................................. 21 2.2. Analysis of Current Treatment Options ...................................................... 22 3 Regulatory Background .............................................................................. 27 3.1. U.S. Regulatory Actions and Marketing History ......................................... 27 3.2. Summary of Presubmission/Submission Regulatory Activity ..................... 27 4 Significant Issues from Other Review Disciplines Pertinent to Clinical Conclusions on Efficacy and Safety ............................................................ 30 4.1. Office of Scientific Investigations ............................................................... 30 4.2. Product Quality ........................................................................................... 30 4.3. Clinical Microbiology .................................................................................. 30 4.4. Devices and Companion Diagnostic Issues ................................................. 30 5 Nonclinical Pharmacology/Toxicology ........................................................ 31 5.1. Executive Summary .................................................................................... 31 5.2. Referenced NDAs, BLAs, DMFs ................................................................... 34 5.3. Pharmacology ............................................................................................. 35 5.3.1. Primary Pharmacology ............................................................................... 35 5.3.2. Secondary Pharmacology ........................................................................... 36 5.3.3. Safety Pharmacology .................................................................................. 37 5.4. ADME/PK .................................................................................................... 38 5.5. Toxicology ................................................................................................... 45 5.5.1. General Toxicology ..................................................................................... 45 5.5.2. Genetic Toxicology ..................................................................................... 54 2 Version date: January 2020 (ALL NDA/ BLA reviews) Disclaimer: In this document, the sections labeled as “The Applicant’s Position” are completed by the Applicant and do not necessarily reflect the positions of the FDA. Reference ID: 4719259 NDA/BLA Multi-disciplinary Review and Evaluation: NDA 214, 621 Relugolix 5.5.3. Carcinogenicity ........................................................................................... 55 5.5.4. Reproductive and Developmental Toxicology ............................................ 56 5.5.5. Other Toxicology Studies ............................................................................ 63 6 Clinical Pharmacology ................................................................................. 67 6.1. Executive Summary .................................................................................... 67 6.2. Summary of Clinical Pharmacology Assessment ........................................ 70 6.2.1. Pharmacology and Clinical Pharmacokinetics ............................................ 70 6.2.2. General Dosing and Therapeutic Individualization .................................... 75 6.2.2.1. General Dosing ........................................................................................... 75 6.2.2.2. Therapeutic Individualization ..................................................................... 79 6.2.2.3. Outstanding Issues ..................................................................................... 87 6.3. Comprehensive Clinical Pharmacology Review .......................................... 88 6.3.1. General Pharmacology and Pharmacokinetic Characteristics .................... 88 6.3.2. Clinical Pharmacology Questions ............................................................... 93 7 Sources of Clinical Data ............................................................................ 100 7.1. Table of Clinical Studies ............................................................................ 100 8 Statistical and Clinical Evaluation ............................................................. 105 8.1. Review of Relevant Individual Trials Used to Support Efficacy ................ 105 8.1.1. MVT-601-3201 .......................................................................................... 105 8.1.2. Study Results ............................................................................................ 113 8.1.3. C27003 ...................................................................................................... 138 8.1.4. Study Results ............................................................................................ 138 8.1.5. Integrated Review of Effectiveness (supplements only) .......................... 145 8.1.6. Assessment of Efficacy Across Trials ........................................................ 145 8.1.7. Integrated Assessment of Effectiveness ................................................... 148 8.2. Review of Safety ....................................................................................... 152 8.2.1. Safety Review Approach ........................................................................... 152 8.2.2. Review of Safety Database ....................................................................... 154 8.2.3. Adequacy of the Applicant’s Clinical Safety Assessments ........................ 159 8.2.4. Safety Results ........................................................................................... 163 8.2.5. Analysis of Submission-Specific Safety Issues .......................................... 188 8.2.6. Clinical Outcome Assessment (COA) Analyses Informing Safety/Tolerability .................................................................................................................. 188 3 Version date: January 2020 (ALL NDA/ BLA reviews) Disclaimer: In this document, the sections labeled as “The Applicant’s Position” are completed by the Applicant and do not necessarily reflect the positions of the FDA. Reference ID: 4719259 NDA/BLA Multi-disciplinary Review and Evaluation: NDA 214, 621 Relugolix 8.2.7. Safety Analyses by Demographic Subgroups............................................ 188 8.2.8. Specific Safety Studies/Clinical Trials ....................................................... 190 8.2.9. Additional Safety Explorations ................................................................. 192 8.2.10.
Recommended publications
  • Leuprolide Acetate)
    For Pediatric Use LUPRON® INJECTION (leuprolide acetate) Rx only DESCRIPTION Leuprolide acetate is a synthetic nonapeptide analog of naturally occurring gonadotropin releasing hormone (GnRH or LH-RH). The analog possesses greater potency than the natural hormone. The chemical name is 5- oxo -L-prolyl-L-histidyl-L-tryptophyl-L-seryl-L-tyrosyl-D-leucyl-L-leucyl-L-arginyl- N-ethyl-L-prolinamide acetate (salt) with the following structural formula: LUPRON INJECTION is a sterile, aqueous solution intended for daily subcutaneous injection. It is available in a 2.8 mL multiple dose vial containing leuprolide acetate (5 mg/mL), sodium chloride, USP (6.3 mg/mL) for tonicity adjustment, benzyl alcohol, NF as a preservative (9 mg/mL), and water for injection, USP. The pH may have been adjusted with sodium hydroxide, NF and/or acetic acid, NF. CLINICAL PHARMACOLOGY Leuprolide acetate, a GnRH agonist, acts as a potent inhibitor of gonadotropin secretion when given continuously and in therapeutic doses. Animal and human studies indicate that following an initial stimulation of gonadotropins, chronic administration of leuprolide acetate results in suppression of ovarian and testicular steroidogenesis. This effect is reversible upon discontinuation of drug therapy. Leuprolide acetate is not active when given orally. Pharmacokinetics A pharmacokinetic study of leuprolide acetate in children has not been performed. Absorption Page 1 In adults, bioavailability by subcutaneous administration is comparable to that by intravenous administration. Distribution The mean steady-state volume of distribution of leuprolide following intravenous bolus administration to healthy adult male volunteers was 27 L. In vitro binding to human plasma proteins ranged from 43% to 49%.
    [Show full text]
  • LHRH) Antagonist Cetrorelix and LHRH Agonist Triptorelin on the Gene Expression of Pituitary LHRH Receptors in Rats
    Comparison of mechanisms of action of luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix and LHRH agonist triptorelin on the gene expression of pituitary LHRH receptors in rats Magdolna Kovacs*†‡ and Andrew V. Schally*†§ *Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112; and †Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112 Contributed by Andrew V. Schally, August 21, 2001 The mechanisms through which luteinizing hormone (LH)-releasing however, are different. LHRH agonists achieve the inhibition of hormone (LHRH) antagonists suppress pituitary gonadotroph func- gonadotropin secretion after a period of continuous exposure (1, tions and LHRH-receptor (LHRH-R) expression are incompletely un- 2, 11–14). In contrast, antagonists of LHRH produce a compet- derstood. Consequently, we investigated the direct effect of LHRH itive blockade of LHRH-R and cause an immediate cessation of antagonist cetrorelix in vitro on the expression of the pituitary the release of gonadotropins and sex steroids, reducing the time LHRH-R gene and its ability to counteract the exogenous LHRH and of the onset of therapeutic effects as compared with the agonists the agonist triptorelin in the regulation of this gene. We also com- (1, 2, 15–17). LHRH agonists such as triptorelin, leuprolide, pared the effects of chronic administration of cetrorelix and triptore- buserelin, or goserelin (1, 2, 14) have been used worldwide for lin on the LHRH-R mRNA level and gonadotropin secretion in ovari- nearly two decades, but LHRH antagonists such as cetrorelix, ectomized (OVX) and normal female rats. The exposure of pituitary ganirelix, and Abarelix have been introduced into the clinical cells in vitro to 3-min pulses of 1 nM LHRH or 0.1 nM triptorelin for 5 h practice relatively recently (1, 2, 15, 16).
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Personalized ADT
    Personalized ADT Thomas Keane MD Conflicts • Ferring • Tolemar • Bayer • Astellas • myriad Personalized ADT for the Specific Paent • Cardiac • OBesity and testosterone • Fsh • High volume metastac disease • Docetaxol • Significant LUTS Cardiovascular risk profile and ADT Is there a difference? Degarelix Belongs to a class of synthe@c drug, GnRH antagonist (Blocker) GnRH pGlu His Trp Ser Tyr Gly Leu Arg Pro Gly NH2 Leuprolide D-Leu NEt Goserelin D-Ser NH2 LHRH agonists Triptorelin D-Trp NH2 Buserelin D-Ser NEt Degarelix D-NaI D-Cpa D-PaI Aph D-Aph D-Ala NH2 N-Me ABarelix D-NaI D-Cpa D-PaI D-Asn Lys D-Ala NH2 Tyr GnRH antagonists Cetrorelix D-NaI D-Cpa D-PaI D-Cit D-Ala NH2 Ganirelix D-NaI D-CPa D-PaI D-hArg D-hArg D-Ala NH2 Millar RP, et al. Endocr Rev 2004;25:235–75 Most acute CVD events are caused By rupture of a vulnerable atherosclero@c plaque The vulnerable plaque – thin cap with inflammaon Inflammation Plaque instability is at the heart of cardiovascular disease Stable plaque Vulnerable plaque Lumen Lumen Lipid core Lipid core FiBrous cap FiBrous cap Thick Cap Thin Rich in SMC and matrix Composion Rich in inflammatory cells: proteoly@c ac@vity Poor Lipid Rich Inflammatory Inflammatory state Highly inflammatory LiBBy P. Circulaon 1995;91:2844-2850 Incidence of Both prostate cancer and CV events is highest in older men Prostate cancer CV events 3500 3500 Prostate cancer All CV disease Major CV events 3000 3000 2827.1 2500 2500 2338.9 2000 2000 1719.7 1500 1500 1152.6 1008.7 1038.7 1000 1000 641.2 545.2 571.1 Age-specific incidence per 100,000 person-years 500 500 246.9 133.7 4.3 0 0 40-49 50-59 60-69 70-79 80-89 90-99 40-49 50-59 60-69 70-79 80-89 90-99 CV, cardiovascular Major CV events = myocardial infarc@on, stroke, or death due to CV disease All CV disease = major CV events + self-reported angina or revascularisaon procedures Driver, et al.
    [Show full text]
  • Hertfordshire Medicines Management Committee (Hmmc) Nafarelin for Endometriosis Amber Initiation – Recommended for Restricted Use
    HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) NAFARELIN FOR ENDOMETRIOSIS AMBER INITIATION – RECOMMENDED FOR RESTRICTED USE Name: What it is Indication Date Decision NICE / SMC generic decision status Guidance (trade) last revised Nafarelin A potent agonistic The hormonal December Final NICE NG73 2mg/ml analogue of management of 2020 Nasal Spray gonadotrophin endometriosis, (Synarel®) releasing hormone including pain relief and (GnRH) reduction of endometriotic lesions HMMC recommendation: Amber initiation across Hertfordshire (i.e. suitable for primary care prescribing after specialist initiation) as an option in endometriosis Background Information: Gonadorelin analogues (or gonadotrophin-releasing hormone agonists [GnRHas]) include buserelin, goserelin, leuprorelin, nafarelin and triptorelin. The current HMMC decision recommends triptorelin as Decapeptyl SR® injection as the gonadorelin analogue of choice within licensed indications (which include endometriosis) link to decision. A request was made by ENHT to use nafarelin nasal spray as an alternative to triptorelin intramuscular injection during the COVID-19 pandemic. The hospital would provide initial 1 month supply, then GPs would continue for further 5 months as an alternative to the patient attending for further clinic appointments for administration of triptorelin. Previously at ENHT, triptorelin was the only gonadorelin analogue on formulary for gynaecological indications. At WHHT buserelin nasal spray 150mcg/dose is RED (hospital only) for infertility & endometriosis indications. Nafarelin nasal spray 2mg/ml is licensed for: . The hormonal management of endometriosis, including pain relief and reduction of endometriotic lesions. Use in controlled ovarian stimulation programmes prior to in-vitro fertilisation, under the supervision of an infertility specialist. Use of nafarelin in endometriosis aims to induce chronic pituitary desensitisation, which gives a menopause-like state maintained over many months.
    [Show full text]
  • Statistical Analysis Plan
    Title: An Open label, Multicenter Study to Assess the Safety and Efficacy of Leuprorelin in the Treatment of Central Precocious Puberty NCT Number: NCT02427958 SAP Approve Date: 01 June 2017 Certain information within this Statistical Analysis Plan has been redacted (ie, specific content is masked irreversibly from view with a black/blue bar) to protect either personally identifiable (PPD) information or company confidential information (CCI). This may include, but is not limited to, redaction of the following: Named persons or organizations associated with the study. Proprietary information, such as scales or coding systems, which are considered confidential information under prior agreements with license holder. • Other information as needed to protect confidentiality of Takeda or partners, personal information, or to otherwise protect the integrity of the clinical study. Takeda Statistical Analysis Plan Leuprorelin-4001 Version: 1.0 An Open label, Multicenter Study to Assess the Safety and Efficacy of Leuprorelin in the Treatment of Central Precocious Puberty Leuprorelin-4001, Leuprorelin in the Treatment of Central Precocious Puberty Statistical Analysis Plan Version: 1.0 Date: 01 June 2017 1 PPD PPD Takeda Statistical Analysis Plan Leuprorelin-4001 Version: 1.0 TABLE OF CONTENTS ABBREVIATIONS ........................................................................................................................ 6 1. INTRODUCTION ...............................................................................................................
    [Show full text]
  • Degarelix for Treating Advanced Hormone- Dependent Prostate Cancer
    CONFIDENTIAL UNTIL PUBLISHED NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Final appraisal determination Degarelix for treating advanced hormone- dependent prostate cancer This guidance was developed using the single technology appraisal (STA) process 1 Guidance 1.1 Degarelix is recommended as an option for treating advanced hormone-dependent prostate cancer, only in adults with spinal metastases who present with signs or symptoms of spinal cord compression. 1.2 People currently receiving treatment initiated within the NHS with degarelix that is not recommended for them by NICE in this guidance should be able to continue treatment until they and their NHS clinician consider it appropriate to stop. 2 The technology 2.1 Degarelix (Firmagon, Ferring Pharmaceuticals) is a selective gonadotrophin-releasing hormone antagonist that reduces the release of gonadotrophins by the pituitary, which in turn reduces the secretion of testosterone by the testes. Gonadotrophin- releasing hormone is also known as luteinising hormone-releasing hormone (LHRH). Because gonadotrophin-releasing hormone antagonists do not produce a rise in hormone levels at the start of treatment, there is no initial testosterone surge or tumour stimulation, and therefore no potential for symptomatic flares. National Institute for Health and Care Excellence Page 1 of 71 Final appraisal determination – Degarelix for treating advanced hormone-dependent prostate cancer Issue date: April 2014 CONFIDENTIAL UNTIL PUBLISHED Degarelix has a UK marketing authorisation for the ‘treatment of adult male patients with advanced hormone-dependent prostate cancer’. It is administered as a subcutaneous injection. 2.2 The most common adverse reactions with degarelix are related to the effects of testosterone suppression, including hot flushes and weight increase, or injection site reactions (such as pain and erythema).
    [Show full text]
  • Altered Cognitive Function in Men Treated for Prostate
    Altered Cognitive Function in Men Treated for Prostate Cancer with LHRH Analogues and Cyproterone Acetate: A Randomised Controlled Trial H. J. Green PhD1,2, K. I. Pakenham PhD1, B. C. Headley PhD3, J. Yaxley FRACS3, D. L. Nicol FRACS2,4, P. N. Mactaggart FRACS2,5, C. Swanson PhD2, R. B. W atson FRACS6, & R. A. Gardiner MD2,3 1School of Psychology and 2Department of Surgery, The University of Queensland, 3Royal Brisbane, 4Princess Alexandra, 5Queen Elizabeth II & 6Mater Hospitals, Brisbane, Queensland, Australia In conjunction with the Northern Section of the Urological Society of Australasia Correspondence should be addressed to: Dr R. A. Gardiner, Department of Surgery, The University of Queensland, Brisbane, Qld 4072, Australia Fax: +61 7 3365 5559; Phone: +61 7 3365 5233; Email: f.gardiner@ mailbox.uq.edu.au This work was wholly funded by Queensland Cancer Fund. **PREPRINT. Final version published in British Journal of Urology (BJU: International) (2002), 90, 427-432 ** Short Title: COGNITIVE CHANGES W ITH HORMONAL MEDICATION 2 Objective. Luteinising hormone releasing hormone (LHRH) analogues have been associated with memory impairments in women using these drugs for gynaecological conditions. This is the first systematic investigation of the cognitive effects of LHRH analogues in male patients. Methods. 82 men with non-localised prostate cancer were randomly assigned to receive continuous leuprorelin (LHRH analogue), goserelin (LHRH analogue), cyproterone acetate (steroidal antiandrogen) or close clinical monitoring. These patients underwent cognitive assessments at baseline and before commencement of treatment (77) then 6 months later (65). Results. Compared with baseline assessments, men administered androgen suppression monotherapy performed worse in 2/12 tests of attention and memory.
    [Show full text]
  • Degarelix Acetate (Firmagon) Reference Number: PA.CP.PHAR.170 Effective Date: 01/18 Last Review Date: 10/18 Revision Log
    Clinical Policy: Degarelix Acetate (Firmagon) Reference Number: PA.CP.PHAR.170 Effective Date: 01/18 Last Review Date: 10/18 Revision Log Description The intent of the criteria is to ensure that patients follow selection elements established by Pennsylvania Health and Wellness® clinical policy for the use of Degarelix Acetate (Firmagon®). FDA Approved Indication(s) Firmagon is indicated for treatment of advanced prostate cancer. Policy/Criteria It is the policy of Pennsylvania Health and Wellness that Firmagon is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Prostate Cancer (must meet all): 1. Diagnosis of prostate cancer; 2. Prescribed by or in consultation with an oncologist; 3. Request meets one of the following (a, b or c): a. Starting dose does not exceed 240 mg given as two injections of 120 mg each; b. Maintenance dose does not exceed 80 mg as a single injection per 28 days; c. Dose is supported by practice guidelines or peer-reviewed literature for the relevant off- label use (prescriber must submit supporting evidence). Approval duration: 12 months B. Other diagnoses/indications: Refer to PA.CP.PMN.53 1. The following NCCN recommended uses for Firmagon, meeting NCCN categories 1, 2a, or 2b, are approved per the PA.CP.PMN.53: II. Continued Approval A. Prostate Cancer (must meet all): 1. Currently receiving medication via Pennsylvania Health and Wellness benefit or member has previously met approval criteria or the Continuity of Care policy (PA.LTSS.PHAR.01) applies; 2. Member is responding positively to therapy; 3. If request is for a dose increase, request meets one of the following: a.
    [Show full text]
  • Follicular and Endocrine Profiles Associated with Different Gnrh
    Reproductive BioMedicine Online (2012) 24, 153– 162 www.sciencedirect.com www.rbmonline.com ARTICLE Follicular and endocrine profiles associated with different GnRH-antagonist regimens: a randomized controlled trial Juan Antonio Garcı´a-Velasco a, Sanja Kupesic b, Antonio Pellicer c, Claire Bourgain d, Carlos Simo´n e, Milan Mrazek f, Paul Devroey g, Joan-Carles Arce h,* a IVI Foundation, Reproductive Endocrinology, Madrid, Spain; b Texas Tech University Health Sciences Center, Department of Obstetrics and Gynecology, El Paso, TX, USA; c IVI Foundation, Reproductive Endocrinology, Valencia, Spain; d UZ Brussel, Department of Pathology, Brussels, Belgium; e IVI Foundation, Research Department, Valencia, Spain; f ISCARE IVF a.s., Lighthouse, Prague, Czech Republic; g UZ Brussel, Centre for Reproductive Medicine, Brussels, Belgium; h Reproductive Health, Global Clinical and Non-Clinical R & D, Ferring Pharmaceuticals, Copenhagen, Denmark * Corresponding author. E-mail address: [email protected] (J.-C. Arce). Dr Juan Garcı´a-Velasco did his training in obstetrics and gynaecology at Madrid Autonoma University, and then his reproductive endocrinology and infertility fellowship at Yale University, USA (1997–1998). He is now Director of IVI-Madrid and Associate Professor at Rey Juan Carlos University. He has published over 100 peer- reviewed articles. He is an ad-hoc reviewer for the main journals in the field and serves on the editorial board of Reproductive BioMedicine Online. His main research interests are endometriosis, ovarian hyperstimulation syndrome, low responders and human implantation. Abstract This trial assessed the impact of early initiation of gonadotrophin-releasing hormone (GnRH) antagonist on follicular and endocrine profiles compared with the fixed GnRH-antagonist protocol.
    [Show full text]
  • Gnrh Antagonists Have Direct Inhibitory Effects on Castration-Resistant Prostate
    Author Manuscript Published OnlineFirst on July 24, 2019; DOI: 10.1158/1535-7163.MCT-18-1337 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. GnRH antagonists have direct inhibitory effects on castration-resistant prostate cancer via intracrine androgen and AR-V7 expression. Vito Cucchiara1*, Joy C. Yang1*, Chengfei Liu1, Hans H. Adomat2, Emma S. Tomlinson Guns2, Martin E. Gleave2, Allen C. Gao1,3, Christopher P. Evans1,3 1Department of Urologic Surgery, University of California at Davis, Sacramento, California. 2Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada 3UC Davis Comprehensive Cancer Center, University of California Davis, California. Running title: GnRH antagonist inhibits intracrine androgen and AR-V7 Keywords: Prostate Cancer, ADT, GnRH antagonist, intracrine androgen Financial Support: This work is supported in part by grants DOD PC150040P1 and Ferring Pharmaceuticals to CP Evans. Conflicts of Interest: Research support from Ferring to CPE and JCY. All other authors have no conflicts of interest. Corresponding Author: Christopher P. Evans, MD, FACS Professor and Chairman, Department of Urology Urologic Surgical Oncology University of California, Davis, School of Medicine 4860 Y St., Suite 3500 Sacramento, CA 95817 academic office tel # (916)734-7520 academic office fax # (916)734-8094 email: [email protected] *These authors contributed equally to this work Downloaded from mct.aacrjournals.org on October 6, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 24, 2019; DOI: 10.1158/1535-7163.MCT-18-1337 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Recent Development of Non-Peptide Gnrh Antagonists
    Review Recent Development of Non-Peptide GnRH Antagonists Feng-Ling Tukun 1, Dag Erlend Olberg 1,2, Patrick J. Riss 2,3,4, Ira Haraldsen 4, Anita Kaass 5 and Jo Klaveness 1,* 1 School of Pharmacy, University of Oslo, 0316 Oslo, Norway; [email protected] (F.-L.T.); [email protected] (D.E.O.) 2 Norsk Medisinsk Syklotronsenter AS, Postboks 4950 Nydalen, 0424 Oslo, Norway; [email protected] 3 Realomics SFI, Department of Chemistry, University of Oslo, 0316 Oslo, Norway 4 Department of neuropsychiatry and psychosomatic medicine, Oslo University Hospital, 4950 Oslo, Norway; [email protected] 5 Betanien Hospital, 3722 Skien, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-9177-6204 Received: 16 November 2017; Accepted: 4 December 2017; Published: 9 December 2017 Abstract: The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications. Keywords: GnRH receptor; non-peptide GnRH antagonist 1.
    [Show full text]