Pressure Ulcer Prevention and Treatment Following Injury: a Clinical Practice Guideline for Health-Care Providers

Total Page:16

File Type:pdf, Size:1020Kb

Pressure Ulcer Prevention and Treatment Following Injury: a Clinical Practice Guideline for Health-Care Providers SPINAL CORD MEDICINE PRESSURE PRESSURE ULCER Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury: A Clinical Practice Guideline for Health-Care Professionals SECOND EDITION CLINICAL PRACTICE GUIDELINE: Administrative and financial support provided by Paralyzed Veterans of America Consortium for Spinal Cord Medicine Member Organizations Academy of Spinal Cord Injury Professionals Nurses Section Psychologists and Social Workers Section Physicians Section American Academy of Orthopedic Surgeons American Academy of Physical Medicine and Rehabilitation American Association of Neurological Surgeons American Association of Spinal Cord Injury Nurses American College of Emergency Physicians American Congress of Rehabilitation Medicine American Occupational Therapy Association American Physical Therapy Association American Psychological Association, Division 22 American Spinal Injury Association Association of Academic Physiatrists Association of Rehabilitation Nurses Christopher and Dana Reeve Foundation Insurance Rehabilitation Study Group International Spinal Cord Society Paralyzed Veterans of America Rick Hansen Institute Society of Critical Care Medicine U. S. Department of Veterans Affairs United Spinal Association CLINICAL PRACTICE GUIDELINE Spinal Cord Medicine Pressure Ulcer Prevention and Treatment Following Injury: A Clinical Practice Guideline for Health-Care Providers SECOND EDITION Consortium for Spinal Cord Medicine Administrative and financial support provided by Paralyzed Veterans of America © Copyright 2014, Paralyzed Veterans of America This guideline has been prepared based on scientific and professional information available in 2014. Users of this guideline should periodically review this material to ensure that the advice herein is consistent with current reasonable clinical practice. The websites noted in this document were current at the time of publication; however, because web addresses and the information contained therein change frequently, the reader is encouraged to stay apprised of the most current information. ISBN 0-929819-24-1 ii PRESSURE ULCER PREVENTION AND TREATMENT FOLLOWING SPINAL CORD INJURY Contents iii Foreword v Preface vi Acknowledgments vii Panel Members – Original Pressure Ulcer CPG ix Reviewers xi Summary of Recommendations 1 The Consortium for Spinal Cord Medicine 1 GUIDELINE DEVELOPMENT PROCESS 1 METHODOLOGY 4 Methods (Second Edition) 5 Introduction 11 Recommendations 11 RISK AND RISK ASSESSMENT 11 DEMOGRAPHIC RISK FACTORS 12 SCI-RELATED RISK FACTORS 13 COMORBID MEDICAL RISK FACTORS 14 NUTRITION 14 PSYCHOLOGICAL, COGNITIVE, CONTEXTUAL, AND SOCIAL FACTORS: SUBSTANCE ABUSE AND ADHERENCE/COMPLIANCE 15 SUPPORT SURFACES FOR BED AND WHEELCHAIR 15 RISK-ASSESSMENT TOOLS 17 PREVENTION STRATEGIES ACROSS THE CONTINUUM OF CARE 17 PRESSURE REDISTRIBUTION 17 VISUAL AND TACTILE SKIN INSPECTIONS 19 TURNING AND REPOSITIONING 20 EFFECTIVE SUPPORT ENVIRONMENT 21 INDIVIDUALIZED PRESSURE REDISTRIBUTION SYSTEM 23 EXERCISE 23 NUTRITION 28 EDUCATION—HEALTH CARE PROFESSIONALS, PERSONS WITH SCI, FAMILY, CAREGIVERS 29 ASSESSMENT AND REASSMENT FOLLOWING PRESSURE ULCER ONSET 29 ASSESSMENT OF THE INDIVIDUAL WITH A PRESSURE ULCER 30 ASSESSMENT AND REASSESSMENT OF THE PRESSURE ULCER 34 TREATMENT – NONSURGICAL 34 CREATING A PHYSIOLOGIC WOUND ENVIRONMENT 34 Cleanse 35 Debridement 37 Selection of Wound Care Dressing 43 Electrical Stimulation 44 Adjunctive Therapies and Biologics 45 MODIFICATION OF TREATMENT PLAN 46 TREATMENT – SURGICAL 46 REFERRAL FOR PRESSURE ULCER SURGERY 48 PREOPERATIVE ASSESSMENT 52 POSTOPERATIVE CARE 54 COMPLICATIONS OF PRESSURE ULCER SURGERY 55 PRESSURE REDISTRIBUTION AND SUPPORT SURFACES 55 BED POSITIONING 57 BED SUPPORT SURFACES 58 WHEELCHAIR SEATING AND POSITIONING 62 WHEELCHAIR SUPPORT SURFACES 65 SUPPORT SURFACES FOR BATHING AND TOILETING 66 OTHER SUPPORT SURFACES 67 Future Research 68 References 82 Glossary 83 Index CLINICAL PRACTICE GUIDELINE iii Foreword ressure ulcers are a frequent, costly, and potentially life-threatening complication of spinal cord injury (SCI). They complicate the rehabilitation Pprocess and are a significant deterrent to participation in activities that contribute to independent, productive, and satisfying lives. Pressure ulcers result in prolonged hospitalizations, delayed community reintegration, reduced quality of life, and loss of self-esteem. The etiology of pressure ulcers is complex and multidimensional. Biochemical, mechanical, and environmental and contextual factors interact at various times to damage tissue. Clinicians and researchers focus on unrelieved pressure, shear, friction, moisture, poor nutrition, immobility, and psychological, social, and economic factors, such as drug abuse, depression, inadequate personal and financial resources, and non- compliance to acknowledged preventive behaviors as the most significant aspects of pressure ulcer development. Every person with SCI is at risk for the development of pressure ulcers and almost all will develop at least one serious pressure ulcer during their lifetime. The prevention and management of pressure ulcers are processes that are inextricably linked across the continuum of care of individuals with SCI. Current prevention programs, specifically hospital-based education interventions, have had limited success in reducing the occurrence of pressure ulcers especially after these individuals return to their families and community. This may be due, in part, to very short hospital stays, currently 3 to 4 weeks, in many rehabilitation facilities, resulting in extremely limited pressure ulcer prevention education. Furthermore, despite the plethora of education and treatment programs and protocols described in the literature, few have been validated for their ability to promote the preventive behaviors that reduce the occurrence or recurrence of pressure ulcers, especially after the person has returned to his or her home and community where out-patient educational resources are very limited. Since the publication of the original clinical practice guideline Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury: A Clinical Practice Guideline for Health-Care Professionals (2000), a number of present scientific studies have advanced our knowledge of the factors that contribute to the formation of pressure ulcers and have provided new directions for improving preventive techniques and treatment. The purpose of this new/ updated clinical practice guideline is to present the current state of the science in pressure ulcer research and clinical practice and scientifically sound strategies that are effective in identifying risk and reducing the incidence, prevalence, and recurrence of this lifelong complication of SCI. More than 225 new articles specific to pressure ulcers among persons with spinal cord injury have been reviewed and graded. The recommendations in this guideline cover a broad spectrum of issues that have been addressed by the new multidisciplinary pressure ulcer clinical practice guideline development panel and several consultants. The significant constructs of this problem are risk and risk assessment; prevention strategies across the continuum of care; assessment and reassessment, following the onset of a pressure ulcer, of the individual with a pressure ulcer and of the ulcer itself; nonsurgical and surgical treatments interventions and their complications; and pressure redistribution and support surfaces and positioning for managing tissue loads for the bed and wheelchair. The recommendations are based on an extensive review and analysis of the available scientific literature and represent the most current understanding of the interventions applied in clinical practice. Where the scientific literature failed to provide guidance in the development of this document, the panel iv PRESSURE ULCER PREVENTION AND TREATMENT FOLLOWING SPINAL CORD INJURY members based their recommendations on expert consensus. The panel was conscientious in identifying areas where knowledge gaps exist so that future research can be directed toward enhancing prevention and efforts. The guideline is designed to be used by physicians in a number of specialties (including internal medicine, plastic surgery, and physical medicine and rehabilitation), nurses, physical and occupational therapists, social workers, and psychologists. It also may be useful to individuals with SCI, their families, and significant others, although the original consumer guide will be updated as well. Additionally, this guideline has implications for administrators, personal care attendants, third-party payers, and those who direct public policy. The Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury Clinical Practice Guideline, 2nd Edition is the result of a collaborative effort among a group of professionals with extensive experience in studying and treating pressure ulcers. Their dedication is reflected in the pages of this document. Susan L. Garber, MA, OTR, FAOTA, FACRM Panel Chair CLINICAL PRACTICE GUIDELINE v Preface s chairman of the Steering Committee of the Consortium for Spinal Cord Medicine, it is a great pleasure for me to introduce the revision of the clinical Apractice guideline Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury. The initial clinical practice guideline for Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury was published in 2000. We were very fortunate to have the chairman of the initial guideline, Susan L. Garber, MA, OTR, FAOTA, return
Recommended publications
  • VII. Wound and Fracture Healing
    Journal of Rehabilitation Research and Development Rehabilitation R & D Progress Reports 1986 VII. Wound and Fracture Healing VII . Wound and Fracture Healing Electrical Stimulation for Augmentation of Wound Healing Scott R. Crowgey, M.D., and Steven M. Sharpe Veterans Administration Research and Development, Decatur, GA 30033 Sponsor: VA Rehabilitation Research and Development Service Purpose—This project will attempt to identify ing that could be influenced by electrical stimu- aspects of the wound healing process that may lation. Efforts will then be directed toward de- be augmented by the exogenous influence of veloping mathematical models of the possible electromagnetic fields. A theoretical analysis of electrical interaction of electromagnetic fields the possible effects of electromagnetic fields on with cells and cell structures to determine how wound healing will include analyses of the these interactions could be optimized to im- interaction of electromagnetic fields with cellu- prove wound healing. It is anticipated that the lar structures and of the deposition of heat in literature will not contain all the information damaged tissue via exogenously applied energy necessary to develop these models . Any gaps in fields. This analysis will then be used as a basis necessary information and data will be filled, if for developing a plan for future investigations practical, using tissue phantom modeling mate- into the potential application of electrical stim- rials, blood, and possibly even primitive tissue ulation for the augmentation of wound healing. culture exposed to a variety of known electro- The initial research will involve a review of magnetic environments, using easily construct- the literature to identify aspects of wound heal- ed exposure chambers.
    [Show full text]
  • Wound Care: the Basics
    Wound Care: The Basics Suzann Williams-Rosenthal, RN, MSN, WOC, GNP Norma Branham, RN, MSN, WOC, GNP University of Virginia May, 2010 What Type of Wound is it? How long has it been there? Acute-generally heal in a couple weeks, but can become chronic: Surgical Trauma Chronic -do not heal by normal repair process-takes weeks to months: Vascular-venous stasis, arterial ulcers Pressure ulcers Diabetic foot ulcers (neuropathic) Chronic Wounds Pressure Ulcer Staging Where is it? Where is it located? Use anatomical location-heel, ankle, sacrum, coccyx, etc. Measurements-in centimeters Length X Width X Depth • Length = greatest length (head to toe) • Width = greatest width (side to side) • Depth = measure by marking the depth with a Q- Tip and then hold to a ruler Wound Characteristics: Describe by percentage of each type of tissue: Granulation tissue: • red, cobblestone appearance (healing, filling in) Necrotic: • Slough-yellow, tan dead tissue (devitalized) • Eschar-black/brown necrotic tissue, can be hard or soft Evaluating additional tissue damage: Undermining Separation of tissue from the surface under the edge of the wound • Describe by clock face with patients head at 12 (“undermining is 1 cm from 12 to 4 o’clock”) Tunneling Channel that runs from the wound edge through to other tissue • “tunneling at 9 o’clock, measuring 3 cm long” Wound Drainage and Odor Exudate Fluid from wound • Document the amount, type and odor • Light, moderate, heavy • Drainage can be clear, sanguineous (bloody), serosanguineous (blood-tinged),
    [Show full text]
  • Suturing with U-Technique Versus Un
    Official Title of the Study: Suturing with U-Technique versus Un- Reapproximated wound Edges during removal of Closed Thoracostomy-tube drain - A single centre Open-label randomized prospective trial (SUTURE TRIAL) NCT NUMBER: Not Yet Assigned DATE OF DOCUMENT: January 16, 2019 1 STUDY SUMMARY Title: Suturing with U-Technique versus Un-Reapproximated wound Edges during removal of Closed Thoracostomy-tube drain - A single centre Open-label randomized prospective trial (SUTURE TRIAL) Background: Closed thoracostomy tube drainage or chest tube insertion is one of the most commonly performed procedures in thoracic surgery. There are several published evidence-based guidelines on safe performance of a chest tube insertion. However, there is absence of prospective controlled trials or systematic reviews indicating the safest technique of closing the wound created at the time of chest tube insertion and that best guarantees good wound and overall outcomes, post-chest tube removal. The use of a horizontal mattress non-absorbable suture or U- suture which is placed at the time of chest tube insertion and used to create a purse-string wound re-approximation at the time of tube removal has been an age-long and time-honored practice in most thoracic surgical settings. It has been established by a recent study that an occlusive adhesive-absorbent dressing can also be safely used to occlude the wound at the time of chest tube removal with good wound and overall outcomes though the study focused on tubes inserted during thoracic surgical operations.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Spinal Cord Injury Guidelines 2018
    SPINAL CORD INJURY GUIDELINES 2018 Department of Physical Medicine and Rehabilitation/Trauma Rehabilitation Resources Program TELE-REHABILITATION GUIDELINE Pressure Ulcers Author(s): Peer Reviewed: Finalized: April 2018 Drafted: February 2014 Date: Published: May 2018 I. Definition, assessment, and diagnosis A. Definition 1. Pressure ulcers are sores caused by ischemia due to elevated or prolonged pressure to the skin and underlying tissue, and occur most often over bony prominences. 2. The injury occurs as a result of intense and/or prolonged pressure or pressure in combination with shear. 3. The tolerance of soft tissue for pressure and shear may also be affected by microclimate, nutrition, perfusion, co-morbidities and condition of the soft tissue. 4. There are numerous grading systems but one widely used system is the National Pressure Ulcer Advisory Panel (NPUAP) pressure ulcer stages. 1 In this system the stage is determined by the depth of the tissue damage observed and is used primarily for initial assessment of a pressure ulcer. a. Stage 1 Pressure Injury: Non-blanchable erythema of intact skin: Intact skin with a localized area of non-blanchable erythema, which may appear differently in darkly pigmented skin. Presence of blanchable erythema or changes in sensation, temperature, or firmness may precede visual changes. Color changes do not include purple or maroon discoloration; these may indicate deep tissue pressure injury. b. Stage 2 Pressure Injury: Partial-thickness skin loss with exposed dermis: Partial-thickness loss of skin with exposed dermis. The wound bed is viable, pink or red, moist, and may also present as an intact or ruptured serum-filled blister.
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • Integumentary Changes and Considerations Impacting People
    Integumentary Changes and Considerations Impacting People with Spinal Cord Injury Authors: Eddie Monroy, PT, DPT, CLW, CWS Why should PTs be concerned about skin for Fact Sheet patients with spinal cord injury? Changes to the skin in patients with SCI (listed below), combined with skin changes common due to aging and other co-morbidities, can make the SCI population at a Produced by very high risk for skin breakdown and pressure injury. Patients with sensory and motor complete injuries are more susceptible to breakdown; however people with 4 incomplete injuries can still be at high risk, especially when medically unstable. o Decreased blood flow, supply, pressure o Decreased amino acid concentration o Decreased enzymes for biosynthesis o Potential change in gene expression o Decreased Adrenergic receptors o (norepinephrine, epinephrine) o Decreased proportion of Type I to Type III collagen fibers o Increased collagen catabolism (dermis) o Decreased Partial Pressure of Oxygen (PO2) a Special Interest What types of skin injuries are most common in SCI? Group of Pressure ulcers/injuries are the most common types of wounds for patients with SCI. They form over bony prominences such the sacrum, ischial tuberosities, greater trochanters, and heels secondary to lack of mobility and blood flow to the areas. It’s important to perform manual skin checks (palpation) in addition to visual skin checks, to note a change in tissue quality (induration / boggy); as signs of potential breakdown may show up before visual signs are noted. Teaching staff and caregivers how to perform these manual and visual checks daily is an integral part of the patient’s overall SCI education and future health.
    [Show full text]
  • A Guide to Post-Operative Wound Care
    A PART OF Education to improve your practice Surgical Wound Management: A Guide to Post-Operative Wound Care SPONSORED BY OCTOBER 2018 WoundCopyright Infection © 2018 Diagnosis WoundSource and Management & Kestrel Health / © Information, 2018 Kestrel Inc. Health All rights Information, reserved. Inc. www.woundsource.com / 1 A part of Surgical Wound Management: A Guide to Post-Operative Wound Care Introduction and Background Millions of patients undergo surgical procedures every year. Advances in surgical techniques afford patients increased access to minimally invasive techniques, allowing avoidance of the need for traditional “open” surgical incisions. However, many procedures performed may still require a larger incision or may involve an existing open wound of varying chronicity. Failure to heal, including wound dehiscence and surgical site infections (SSIs), is the most common major complication related to surgical wound management, and monitoring for conditions related to this failure is crucial during the immediate (three- to four-week) post-operative period.1 The impact of SSI is widespread, affecting the patient, caregivers, the treatment team, and the health care system as a whole. SSIs are challenging because of their multifactorial development. For patients who go on to develop SSI after a surgical procedure, length of stay can be increased by up to two weeks, and overall treatment costs average nearly $35,000 per incident. The most common wound-related consequence of SSI is dehiscence, for which wound management modalities such as debridement and advanced dressings may be used to expedite healing. WoundA PART OF Infection Diagnosis and Management / © 2018 Kestrel Health Information, Inc. www.woundsource.com / 2 Surgical Wound Management: A Guide to Post-Operative Wound Care A part of Copyright © 2018 WoundSource & Kestrel Health Information, Inc.
    [Show full text]
  • Wound Healing SEP 2019
    www.treatnow.org September 2019 WOUND HEALING EXECUTIVE SUMMARY: Traditional medicine does not treat the physical wound to the brain. After a decade and a half of merely treating symptoms, DOD/VA lament the rise in suicides across the services. After billions spent on drugs, computer and device interventions, and questionable treatments, a suicide epidemic afflicts service members. Yet not one of the 80+ therapies/processes/procedures/devices, countless computer applications, and 114+ prescribed drugs has been approved by the FDA for TBI, nor do they "treat" wounds. All are used off-label for TBI. All are controversial at some level. Many of them are brand-new and haven't even been explored in the literature. No risk analysis has been performed, and no tracking is done. Yet neither the DOD nor the VA provide Hyperbaric Oxygen Therapy to treat and heal brain injury. HBOT is the one therapy proved by multiple clinical trials inside DOD/VA, across the US, and around the world to treat and help heal the wound to the brain, safely and effectively. ****************** A wound will not heal without ENERGY and OXYGEN. A brain wound leads immediately to a “concussion cascade”, a negative flow of adverse consequences that may lead to truly bad effects over time: diseases like Chromic Traumatic Encephalopathy (CTE), Alzheimer’s, and other neurologic disorders. Symptoms may abate, but idling neurons may not recover without application of additional oxygen and energy delivered directly to the brain. The use of Hyperbaric Oxygen addresses directly this negative cascade of damage and degeneration both in the acute phase of wound stabilization and in the acute and chronic phases of wound healing.
    [Show full text]
  • Guideline: Assessment & Treatment of Surgical Wounds
    British Columbia Provincial Nursing Skin and Wound Committee Guideline: Assessment and Treatment of Surgical Wounds Healing by Primary and Secondary Intention in Adults & Children Developed in collaboration with the Wound Care Clinicians from: / TITLE Guideline: Assessment & Treatment of Surgical Wounds Healing by Primary and Secondary Intention in Adults & Children Practice Level Nurses in accordance with health authority / agency policy. Clients with surgical wounds require an interprofessional approach to provide comprehensive, evidence-based assessment and treatment. This clinical practice guideline focuses solely on the role on the nurse, as one member of the interprofessional team providing care to these clients. Background Surgical wounds normally heal by primary intention or closure using sutures, staples or tapes. Sutures and staples should be left in place long enough to ensure there is sufficient tissue strength to hold the incision together without support. Timing of suture and staple removal varies based on the stage of healing and the location and extent of the incision. However, sutures left in too long can cause scarring and infection. Wounds may heal by secondary intention if there is a risk of severe contamination or if tissue loss is such that skin edges cannot be approximated. Surgical wounds left to heal by secondary intention have a healing pattern similar to chronic wounds and healing is evaluated using similar criteria. Wounds may also heal by delayed primary intention when there is a known risk of infection or the client’s condition prevents primary closure, e.g. edema at the site. Surgical wounds are classified as clean, clean-contaminated, contaminated and dirty-infected.
    [Show full text]
  • The Far-Reaching Scope of Neuroinflammation After Traumatic Brain Injury
    REVIEWS The far-reaching scope of neuroinflammation after traumatic brain injury Dennis W. Simon1, Mandy J. McGeachy2, Hülya Bayır1, Robert S. B. Clark1, David J. Loane3 and Patrick M. Kochanek4 Abstract | The ‘silent epidemic’ of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI — from initial triggers to chronic neuroinflammation — we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings 1Department of Critical Care that could
    [Show full text]
  • Applied Wound Management and Using the Wound Healing Continuum in Practice
    Technical Guide APPLIED WOUND MANAGEMENT AND USING THE WOUND HEALING CONTINUUM IN PRACTICE David Gray, Richard White, Pam Cooper, Andrew Kingsley Assessing a patient with a wound involves accurate assessment of both the wound and the patient’s health status. The Applied Wound Management framework utilises three different continuums, each relating to a key wound parameter, the Wound Healing Continuum, the Wound Infection Continuum and the Wound Exudate Continuum. The Applied Wound Management The AWM system aids this type proceed effectively without (AWM) framework utilises of decision-making, reducing the a moist wound environment three different continuums, risk of poor practice and litigation. (Parnham, 2002). each relating to a key wound parameter: Using the Wound Healing Yellow and fibrous wound tissue 8 Wound Healing Continuum Continuum to assess tissue that adheres to the wound bed (WHC): is represented by the Wound tissue types and cannot be removed on tissues in the wound and is a If left to heal by secondary irrigation is known as slough colour-based continuum. intention, the tissues in a (Tong, 1999). This adherent, 8 Wound Infection Continuum wound (within the wound bed fibrous material is derived from (WIC): is subdivided into and margins) indicate the the proteins, fibrin and fibrinogen named stages representing relevant pathologies present, (Tong, 1999). In combination with varying host responses to reflect the state of healing and, wound exudate, it serves as an bioburden, each identified by consequently, the success of the ideal environment for bacterial clinical cues. management approach. Thus, growth and, consequently, 8 Wound Exudate Continuum a black wound (as opposed to infection (Davies, 2004).
    [Show full text]