Sedimentary Structures in Base-Surge Deposits with Special Reference to Cross-Bedding, Ubehebe Craters, Death Valley, California

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Structures in Base-Surge Deposits with Special Reference to Cross-Bedding, Ubehebe Craters, Death Valley, California BRUCE M. CROWE \ Department of Geological Sciences, University of California, Santa Barbara, RICHARD V. FISHER j Santa Barbara, California 93106 Sedimentary Structures in Base-Surge Deposits with Special Reference to Cross-Bedding, Ubehebe Craters, Death Valley, California Note: This paper is dedicated to Aaron and Elizabeth more km2. The volcanic field is named from Waters on the occasion of Dr. Waters' retirement. the largest crater, Ubehebe. Following the recognition of base-surge depositions in the rim beds of Ubehebe Crater ABSTRACT (Fisher and Waters, 1969, 1970), the present Ubehebe craters, Death Valley, California, study was undertaken to evaluate in greater include over a dozen maar volcanoes formed detail the physical characteristics of base-surge primarily by phreatic eruptions of trachybasalt deposits in order to gain possible insights into through a thick and permeable fanglomeratic flow mechanisms of base surges. Particular sequence on the north slope of Tin Mountain. attention is given here to the bed forms de- Tuff derived from Ubehebe Crater, the scribed as antidunes at Ubehebe by Fisher and largest crater in the area, is characteristically Waters (1970). thinly bedded or laminated and was deposited The Ubehebe craters originated on the by airfall and base-surge processes. Thick- gullied northern slope of Tin Mountain in late bedded deposits showing evidence of mass flow Pleistocene or Holocene time following the dis- occur where base surges were concentrated appearance of ancient Pleistocene (?) lake within, and followed gullies which had been waters. About 4 km north of the craters, tuff carved into the fanglomerate prior to eruption. from Ubehebe rests on lake deposits exposed Cross-bedded sequences were deposited by in the valley floor. The ancient lake has been base surges that moved radially outward from named Lake Rogers and was present during Ubehebe Crater. They occur in the form of Pleistocene time (Clements, 1954). The vol- relatively small and large dunelike structures canoes exploded through, and their deposits with spacing and morphologic features similar rest upon, a fanglomeratic sequence at least 500 to antidunes and migration patterns somewhat m thick. similar to climbing ripples. The largest dunes in the area are composite structures that preserve X a sequence of bed forms deposited in the high flow regime. Deposition apparently began in "N X'« \ \ the antidune phase of the upper flow regime, \ Ubthibt progressing in time through sinuous lamination i to plane beds as flow power decreased. Lamina- t tions are well developed and bed forms are preserved at each level within the composite \ California structures because of a high rate of deposition Ubehebe and high sediment cohesion during flow of the Craters base surges. V-, ^f ^ %\ INTRODUCTION £ Tin % 1 km IN \ J Mountain • ' The Ubehebe craters area, located in Death See it Valley, California (Fig. 1), includes 13, possibly 16, volcanic craters within an area of about Figure 1. Index map showing location of Ubehebe 3 km2. Ejecta from the craters covers 15 or craters area. Geological Society of America Bulletin, v. 84, p. 663-682, 14 figs., February 1973 663 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/84/2/663/3429009/i0016-7606-84-2-663.pdf by guest on 27 September 2021 664 CROW2 AND FISHER The fanglomerate consists of thick-bedded to The largest crater, Ubehebe Crater, is a massive, highly lenticular beds of sandstone roughly circular tuff ring (terminology of and conglomerate with pebble clasts composed Fisher and Waters, 1970) 0.7 to 0.8 km in predominantly of volcanic and metamorphic diameter and 235 m deep. The diameter of the rock varieties with lesser amounts of sedimen- crater at the original eruptive surface (top of tary and plutonic fragments. The sandstone fanglomerate) is about 0.6 km. The shape of interbeds and matrix of the coarse-grained the crater is modified in the northwestern and layers are composed of lithic fragments and southeastern parts by preemption topography minerals derived from materials as diverse as and posteruption slumping. the large clasts. The rocks are poorly sorted, Ejecta from Ubehebe Crater attain a maxi- weakly cemented with calcite, and highly mum thickness of 50 m at the crater rim. The permeable. deposits generally decrease in thickness radially The Ubehebe craters are here divided into from the crater and dip gently outward at 10° (1) Ubehebe Crater, (2) Little Hebe Crater, to 15° except for local thickening and draping (3) a western crater cluster, and (4) a southern within preexisting gullies carved into the crater cluster (Fig. 2). fanglomerate. At one place on the southeast PROBABLE SEQUENCE OF ERUPTIVE EVENTS OF THE UBEHEBE CRATERS Nonphreatic vulcanian eruptions developed cinder cone located near crater no. 1; final stages of activity Strombolian. Vent area of cinder cone may have coincided with vent area of crater no. 1. Phreatic eruptions formed crater no. 1 and destroyed cinder cone. Crater no. 2 developed approxi- mately contemporaneously with crater no. 1—both are explosion craters with little rim ejecta. Cra- ter nos. 3 and 4 developed after crater no. 1 and prior to Ubehebe Crater. Phreatic explosions of Western Crater Cluster may have been contsmporaneous with activity from Slouthern Crater Cluster. Mild volcanic activity from Little Hebe Cra:er developed small spatter cone which was disrupted by phreatic base-surge forming eruptions from same vent, greatly widening Little Hebe Crater. Repeated, phreatic, base-surge forming eruptions formed Ubehebe Crater; ejecta from Ubehebe Crater covers all craters in volcanic field. Figure 2. Index map showing crater designation and probable sequence of eruptive events. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/84/2/663/3429009/i0016-7606-84-2-663.pdf by guest on 27 September 2021 BASE-SURGE DEPOSITS, UBEHEBE CRATERS, CALIFORNIA 665 side of the rim, inward dipping strata are rim sequence include agglomerate (on the preserved. south side) derived from early cinder cone Inside the eastern portion of the crater below activity and a thin sequence of tuff identical the rim deposits are excellent exposures of the in kind to beds from Ubehebe which were basement fanglomerate. It is intensely fractured derived from earlier phreatic eruptions within and faulted, probably due to explosive crater the southern and western crater cluster groups. formation rather than tectonic processes. It is estimated that well over three-fourths of The western half of Ubehebe Crater has the 50-m rim-bed tuff sequence originated from been modified by posteruption slumping, which Ubehebe. is particularly pronounced on the northwest Beds derived from Ubehebe Crater contain side where slumped debris partially covers a accidental material derived from the under- resistant white lens of volcaniclastic sandstone lying fanglomerate, accessory ejecta from within the fanglomerate. Small debris flows pre-Ubehebe Crater vulcanian activity, and which develop from infrequent rains on poorly juvenile sideromelane fragments with some consolidated tuff are active on the inside slopes bombs derived from the Ubehebe eruption. It of the crater. The relatively flat floor oc- is likely that all three kinds of ejecta from the casionally contains ephemeral lakes. earlier eruptions were reincorporated with the Little Hebe Crater is a small cone with a early ejecta of Ubehebe. Color variations of the diameter of 100 m and a depth of 20 m. It is beds reflect the abundance of the various composed of agglutinated spatter overlain by a constituents: those rich in accidental debris 5- to 8-m veneer of pale red to orange base- are grayish-brown, those with abundant basaltic surge deposits derived from Little Hebe, and fragments are dark gray, and beds rich in is draped with gray tuff beds derived from sideromelane are light gray. Ubehebe Crater. Under the microscope, juvenile ejecta are The southern crater cluster consists of four hyalopilitic, although some samples are pilo- probable craters greatly modified by erosion, taxitic due to microlite orientation during by the breaching of crater walls by adjacent aerial flight. Phenocrysts include kaersutite, craters (including Ubehebe), and by partial augite, and plagioclase. Plagioclase microlites covering with volcanic ejecta from Ubehebe are andesine to calcic-andesine; micropheno- Crater. Little Hebe Crater is nestled in the crysts and phenocrysts (calcic-oligoclase to northernmost crater (crater no. 1) of this andesine) are highly resorbed with cloudy cores cluster. filled with inclusions of glass, iron oxides, and The western crater cluster consists of seven rare clinopyroxene; thin sodic rims surrounding craters (including two craters somewhat south the cloudy cores are common. Kaersutite of the aligned crater cluster). The craters are occurs as scattered phenocrysts and micro- highly eroded and are draped with ejecta from phenocrysts but does not occur in the ground- Ubehebe Crater. Most are explosion craters mass. It is yellow-brown in plane light, has a with little rim ejecta, although the larger ones 2VX of about 67°, and is invariably surrounded appear to have sufficient ejecta surrounding by opacitic rims of magnetite and clino- their vents to be considered tuff rings. pyroxene. Clinopyroxene, occurring as pheno- Ejecta from Ubehebe Crater are most crysts, microphenocrysts, and microlites, has a voluminous and cover all preexisting craters; 2VZ of 44°, indicating that it
Recommended publications
  • Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
    Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone.
    [Show full text]
  • Syn-Eruptive, Soft-Sediment Deformation of Deposits
    Solid Earth, 6, 553–572, 2015 www.solid-earth.net/6/553/2015/ doi:10.5194/se-6-553-2015 © Author(s) 2015. CC Attribution 3.0 License. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves G. A. Douillet1, B. Taisne2, È. Tsang-Hin-Sun3, S. K. Müller4, U. Kueppers1, and D. B. Dingwell1 1Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany 2Earth Observatory of Singapore, Nanyang Technological University, Singapore 3Université of Brest and CNRS, Laboratoire Domaines Océaniques, Plouzaré, France 4Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany Correspondence to: G. A. Douillet ([email protected]) Received: 17 November 2014 – Published in Solid Earth Discuss.: 16 December 2014 Revised: 16 April 2015 – Accepted: 20 April 2015 – Published: 21 May 2015 Abstract. Soft-sediment deformation structures can provide to be the signature of shear instabilities occurring at the valuable information about the conditions of parent flows, boundary of two granular media. They may represent the sediment state and the surrounding environment. Here, the frozen record of granular, pseudo Kelvin–Helmholtz examples of soft-sediment deformation in deposits of dilute instabilities. Their recognition can be a diagnostic for pyroclastic density currents are documented and possible flows with a granular basal boundary layer. Vertical syn-eruptive triggers suggested. Outcrops from six different inter-penetration and those folds-and-faults features related volcanoes have been compiled in order to provide a to slumps are driven by their excess weight and occur | downloaded: 11.10.2021 broad perspective on the variety of structures: Soufrière after deposition but penecontemporaneous to the eruption.
    [Show full text]
  • Death Valley National Park
    COMPLIMENTARY $3.95 2019/2020 YOUR COMPLETE GUIDE TO THE PARKS DEATH VALLEY NATIONAL PARK ACTIVITIES • SIGHTSEEING • DINING • LODGING TRAILS • HISTORY • MAPS • MORE OFFICIAL PARTNERS T:5.375” S:4.75” PLAN YOUR VISIT WELCOME S:7.375” In T:8.375” 1994, Death Valley National SO TASTY EVERYONE WILL WANT A BITE. Monument was expanded by 1.3 million FUN FACTS acres and redesignated a national park by the California Desert Protection Act. Established: Death Valley became a The largest national park below Alaska, national monument in 1933 and is famed this designation helped focus protection for being the hottest, lowest and driest on one the most iconic landscapes in the location in the country. The parched world. In 2018 nearly 1.7 million people landscape rises into snow-capped mountains and is home to the Timbisha visited the park, a new visitation record. Shoshone people. Death Valley is renowned for its colorful Land Area: The park’s 3.4 million acres and complex geology. Its extremes of stretch across two states, California and elevation support a great diversity of life Nevada. and provide a natural geologic museum. Highest Elevation: The top of This region is the ancestral homeland Telescope Peak is 11,049 feet high. The of the Timbisha Shoshone Tribe. The lowest is -282 feet at Badwater Basin. Timbisha established a life in concert Plants and Animals: Death Valley with nature. is home to 51 mammal species, 307 Ninety-three percent of the park is bird species, 36 reptile species, two designated wilderness, providing unique amphibian species and five fish species.
    [Show full text]
  • Fluvial Sedimentary Patterns
    ANRV400-FL42-03 ARI 13 November 2009 11:49 Fluvial Sedimentary Patterns G. Seminara Department of Civil, Environmental, and Architectural Engineering, University of Genova, 16145 Genova, Italy; email: [email protected] Annu. Rev. Fluid Mech. 2010. 42:43–66 Key Words First published online as a Review in Advance on sediment transport, morphodynamics, stability, meander, dunes, bars August 17, 2009 The Annual Review of Fluid Mechanics is online at Abstract fluid.annualreviews.org Geomorphology is concerned with the shaping of Earth’s surface. A major by University of California - Berkeley on 02/08/12. For personal use only. This article’s doi: contributing mechanism is the interaction of natural fluids with the erodible 10.1146/annurev-fluid-121108-145612 Annu. Rev. Fluid Mech. 2010.42:43-66. Downloaded from www.annualreviews.org surface of Earth, which is ultimately responsible for the variety of sedi- Copyright c 2010 by Annual Reviews. mentary patterns observed in rivers, estuaries, coasts, deserts, and the deep All rights reserved submarine environment. This review focuses on fluvial patterns, both free 0066-4189/10/0115-0043$20.00 and forced. Free patterns arise spontaneously from instabilities of the liquid- solid interface in the form of interfacial waves affecting either bed elevation or channel alignment: Their peculiar feature is that they express instabilities of the boundary itself rather than flow instabilities capable of destabilizing the boundary. Forced patterns arise from external hydrologic forcing affect- ing the boundary conditions of the system. After reviewing the formulation of the problem of morphodynamics, which turns out to have the nature of a free boundary problem, I discuss systematically the hierarchy of patterns observed in river basins at different scales.
    [Show full text]
  • Descriptions of Common Sedimentary Environments
    Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles).
    [Show full text]
  • Beryllium-10 Terrestrial Cosmogenic Nuclide Surface Exposure Dating of Quaternary Landforms in Death Valley
    Geomorphology 125 (2011) 541–557 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley Lewis A. Owen a,⁎, Kurt L. Frankel b, Jeffrey R. Knott c, Scott Reynhout a, Robert C. Finkel d,e, James F. Dolan f, Jeffrey Lee g a Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA b School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Geological Sciences, California State University, Fullerton, California, USA d Department of Earth and Planetary Science Department, University of California, Berkeley, Berkeley, CA 94720-4767, USA e CEREGE, BP 80 Europole Méditerranéen de l'Arbois, 13545 Aix en Provence Cedex 4, France f Department of Earth Sciences, University of Southern California, Los Angeles, California, USA g Department of Geological Sciences, Central Washington University, Ellensburg, Washington, USA article info abstract Article history: Quaternary alluvial fans, and shorelines, spits and beach bars were dated using 10Be terrestrial cosmogenic Received 10 March 2010 nuclide (TCN) surface exposure methods in Death Valley. The 10Be TCN ages show considerable variance on Received in revised form 3 October 2010 individual surfaces. Samples collected in the active channels date from ~6 ka to ~93 ka, showing that there is Accepted 18 October 2010 significant 10Be TCN inheritance within cobbles and boulders. This
    [Show full text]
  • Ubehebe Crater
    Historical Significance UBEHEBE CRATER The crater was formed when magma migrated close to the surface and the heat of the magma caused groundwater to flash into steam, throwing large quantities of pulverized old rock and new magma across the stony alluvial fan draped across the valley floor. Ubehebe Crater is a large volcanic crater 600 feet deep and half a mile across. We often hear mistakenly that “Ubehebe” means “big basket”, but the Paiute name Ubehebe was first applied to the 5,678 ft. The magma rose through a fault that lies along the western base of Tin Mountain. Movement on this fault was responsible for uplift of the entire Cottonwood Mountains range. In 2012, new evidence suggested that the cra- ter may be as young as 800 years old, although this estimation was a lower bound, and it’s still possible the crater is much older than that. Sergio Mares/ Landscape Architecture/ Spring 2019 Geographic Significance Cultural Significance Ubehebe Crater, located near the northern end of Death Valley, California, on a spur that extends north from Tin Mountain of the Panamint Range, and at a site slightly northwest from the elevation marked 3,925 feet on the Ballarat, California, quadrangle topographic sheet of the U.S. Geological Survey are two volcanic cones. The larger crater, nevertheless, is approximately 2,000 feet wide at the top and 500 feet deep. The smaller crater, Little Hebe is estimated to be 500 feet wide at the top and 150 feet deep. Due to the great porosity of the deposits, heavy rainfall goes into rather than over their surfaces - hence the clay accumulations at the bot- tom of the craters and it is only after chemical weathering of the fragments brings about some degree of consolidation that active dissection of the outer slopes of such cones takes place.
    [Show full text]
  • CHAPTER 9 Sedimentary Structures: Textures and Depositional Settings
    CHAPTER 9 Sedimentary Structures: Textures and Depositional Settings of Shales from the Lower Belt Supergroup, Mid-Proterozoic, Montana, U.S.A. Juergen Schieber Introduction shown in Figure 9.2 and summarized in Figure 9.3. Siltstone beds commonly form graded silt/mud couplets with overlying beds of The Belt Supergroup of the northwestern United States is a thick (20 dolomitic clayey shale (Fig. 9.2). These couplets show parallel km) shale-dominated sequence that accumulated in an epicontinental lamination, cross-lamination, and graded rhythmites in the lower silty basin between 1450 and 850 Ma (Harrison, 1972; Stewart, 1976). In this portion. chapter shales from the lower portion of the Belt Supergroup are examined and interpreted with respect to potential depositional Interpretation environment. Shale samples were collected in the eastern portion of the basin from the Newland Formation, and in the central and western Beds of hummocky cross-stratified sandstones (Harms et al., 1982) portion of the basin from its lateral equivalent, the Prichard Formation occur interbedded with the striped shales, indicating occasional (Fig. 9.1). sediment deposition by storms. Interstratified carbonate units contain Shales of the Newland Formation have been studied in considerable various indicators of relatively shallow water, such as wave and current detail (Schieber, 1985, 1986, 1989), and six major shale fades types can ripples, flat pebble conglomerates, and cryptalgal laminites. Irregular be distinguished. The overall depositional setting for these shales was wavy-crinkly laminae (Fig. 9.2) and mechanical strength during soft probably a shallow, low-energy shelf. Shales of the Prichard Formation sediment deformation suggest a microbial mat origin for carbonaceous were deposited in a deeper portion of the basin, and differ in a number silty shale beds (discussed in depth by Schieber, 1986).
    [Show full text]
  • T)Eath %Jaluy NATIONAL MONUMENT
    T)eath %JalUy NATIONAL MONUMENT CALIFORNIA NEVADA UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary DEATH VALLEY NATIONAL PARK SERVICE • Conrad L. Wirth, Director NATIONAL MONUMENT Contents Open all year • Regular season, October IS to May IS CLOUD FLAMES (Photo by FLOYD B. EVANS, A.P.S.A.) Cover BEFORE THE WHITE MAN CAME 3 The National Park System, of which Death Valley National Monument THE HISTORICAL DRAMA 4 is a unit, is dedicated to the conservation of America's scenic, scientific, TALES WRITTEN IN ROCK AND LANDSCAPE 5 and historic heritage for the benefit and enjoyment of the people. DESERT WILDLIFE . 10 DESERT PLANT LIFE 11 INTERPRETIVE SERVICES 12 DEATH VALLEY National Monument, other mountain in the 48 States. WHAT TO SEE AND DO WHILE IN THE MONUMENT 12 embracing nearly 2 million acres of primi­ The maximum air temperature of 134° F. HOW TO REACH DEATH VALLEY 13 tive unspoiled desert country, was estab­ in the shade recorded in Death Valley was lished by Presidential proclamation on a world record until 1922 when 136.4° F. MONUMENT SEASON 14 February 11, 1933. Famed as a scene of was reported from Azizia, Tripoli. Tempera­ WHAT TO WEAR 14 suffering in the gold-rush drama of 1849, tures near Badwater have probably been Death Valley has long been known to ACCOMMODATIONS 14 even hotter. These extreme temperatures scientist and layman alike as a region rich are known only during the summer ADMINISTRATION 15 in scientific and human interest. Its dis­ months. PLEASE HELP PROTECT THIS MONUMENT 15 tinctive types of scenery, its geological Through the winter season, from late phenomena, flora, fauna, and climate are October until May, the climate is usually unique.
    [Show full text]
  • Death Valley National Monument
    DEATH VALLEY NATIONAL MONUMENT D/ETT H VALLEY NATIONAL 2 OPEN ALL YEAR o ^^uJv^/nsurty 2! c! Contents 2 w Scenic Attractions 2 2! Suggested Trips in Death Valley 4 H History 7 Indians 8 Wildlife 9 Plants 12 Geology 18 How To Reach Death Valley 23 By Automobile 23 By Airplane, Bus, or Railroad 24 Administration 25 Naturalist Service 25 Free Public Campground 25 Accommodations 25 References 27 UNITED STATES DEPARTMENT OF THE INTERIOR- Harold L. Ickes, Secretary NATIONAL PARK SERVICE Arno B. Cammerer, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON EATH VALLEY National Monument was created by Presidential proclamation on 2February 11), 1933, and enlarged to its present dimensions on March 26, 1937. Embracing 2,981 square miles, or nearly 2 million acres of primitive, unspoiled desert country, it is the second largest area administered by the National Park Service in the United States proper. Famed as the scene of a tragic episode in the gold-rush drama of '49, Death Valley has long been known to scientist and layman alike as a region rich in scientific and human interest. Its distinctive types of scenery, its geological phenomena, its flora, and climate are not duplicated by any other area open to general travel. In all ways it is different and unique. The monument is situated in the rugged desert region lying east of the High Sierra in eastern California and southwestern Nevada. The valley itself is about 140 miles in length, with the forbidding Panamint Range forming the western wall, and the precipitous slopes of the Funeral Range bounding it on the east.
    [Show full text]
  • Fades Models 3. Sandy Fluvial Systems
    Geosclence Canada. Volume 3. Number 2. May. 1976 101 hydrocarbon reservoirs, themeandering builds laterally and downstream across systems depositing elongate shoestring the flood plain. sands stratigraphically bounded by The channel floor commonly has a shales, and the sandy braided systems coarse "lag" deposa of material that the forming thicker and laterally more river can only move at peak flood time. extensive sand bodies. This material would include the gravelly component of the clastic load, together handerlng Systems with water-logged plant material and The main elementsof a modern partly consolidated blocks of mud meandering system lexemplified by the eroded locallvfrom the channel wall. ~ississi~~ior~razoi exi is) ~iveis] Above the lag, sand is transported Fades Models are shown in Figure 1. Sandy deposition through the system as bedload. During IS normally restrlctea to the maln average discharge, tne typlcal bedlorm 3. Sandy Fluvial channel or to oart~alv or Comoletelv on the cnannel floor cons~sls~ ~ ~ ol slnbo~s-~ ~~~~ abandoned meander'loops; deposition crested dunes (Fig. I)ranging in height systems of fines (silt and clay) occurs on levees from about 30 cm to one metre. and in flood basins. It is surprising that Preservation of these dunes results in there are so few integrated studies of trough cross-stratification. In shallower Roger G. Walker modern meandering systems in the parts of the flow, higher on the point bar. Department of Geology laeralure of the last twenty years. The the bedform is commonly ripples McMaster University most important papers include those of (preserved as trough cross lamination; Hamilton, Ontario LBS 4Ml Sundborg (1956; River Klaralven).
    [Show full text]
  • GY 402: Sedimentary Petrology
    UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 17: Sandy Fluvial Depositional Environments Instructor: Dr. Douglas W. Haywick Last Time Volcaniclastic Sedimentary Rocks 1. Origin of volcaniclastic sedimentary rocks 2. Classification of volcaniclastic sed. rocks 3. Thin section petrography Volcaniclastic sedimentary rocks Air fall coarse fine Volcaniclastic sedimentary rocks tephra ignimbrite tephra ignimbrite Volcaniclastic sedimentary rocks Parallel laminations Volcaniclastic sedimentary rocks are sedimentary rocks… Channel lag … they follow sedimentary rules Volcaniclastic Petrography Source: Carozzi, A.V., 1993. Sedimentary Petrology. Prentice Hill, 263p. 1993. Sedimentary Petrology. A.V., Source: Carozzi, Vitric\Crystal Tuff quartz rock frag ppl xn 1.5mm vitric fragments Today’s Agenda Sandy Fluvial Siliciclastic Environments •Meandering river dynamics •Sedimentary facies •The model (vertical sections) Meandering Rivers • Sinuous, single channel drainage systems Meandering Rivers • Sinuous, single channel drainage systems • Typically form on low gradient alluvial plains Meandering Rivers • Sinuous, single channel drainage systems • Typically form on low gradient alluvial plains • Sinuosity depends on gradient Meandering Rivers • Are characterized by a distinct suite of facies and processes • Oxbow lakes • Levees • Floodplains • Cut banks • Point bars • Yazoo streams • Cutoffs Meandering Rivers • The channel meanders across the flood plain Meandering Rivers • Deposition occurs on the inside of meander loops (point bar) Meandering Rivers • Large point bars may consist of numerous accretionary ridges Meandering Rivers • Erosion occurs on the outside of meander loops (cut bank) Meandering Rivers • Meandering river channels are asymmetrical (deepest near cut bank) Meandering Rivers • Water velocity is greatest where the channel is deepest resulting in a “corkscrew” flow pattern. http://www.geocities.com/sogodbay/Images/SDK/Inecar03.jpg Meandering Rivers • Vortices can be either singular or complex.
    [Show full text]