Now Published in Limnologica 82:125765

Total Page:16

File Type:pdf, Size:1020Kb

Now Published in Limnologica 82:125765 Demographic history, range size and habitat preferences of the groundwater amphipod Niphargus puteanus (C.L. Koch in Panzer, 1836) Dieter Weber1,2, Jean-François Flot1,3, Hannah Weigand2, Alexander M. Weigand2* 1 Université Libre de Bruxelles, Evolutionary Biology & Ecology group, Avenue F.D. Roosevelt 50, B- 1050 Brussels - Belgium 2 Musée National d'Histoire Naturelle Luxembourg, Section de zoologie, 25 Rue Münster, L-2160 Luxembourg, Luxembourg 3 Interuniversity Institute of Bioinformatics in Brussels – (IB)2, ULB-VUB, La Plaine Campus, Triomflaan, C building, 6th floor, CP 263, 1050 Brussels, Belgium *corresponding author: [email protected] Abstract Niphargus puteanus is the oldest described species of its genus and, in the past, was used as a taxonomic annotation for any subterranean amphipod record. For that reason, no clear knowledge exists about its actual range size and habitat preferences. We here applied a molecular taxonomic and phylogeographical approach based on mitochondrial and nuclear DNA to shed light on its distribution and to infer its demographic history. Furthermore, we analysed aquifer types and water flow regimes to provide a clearer picture of the species’ ecological requirements. Our results indicate that N. puteanus is widely distributed north of the Alps, having its core range in the geomorphological natural region of the ‘South German Scarplands’ (SGS). Additionally, isolated satellite populations exist in the Taunus and the Sauerland, and two single individuals were collected in Luxembourg and in Austria, respectively. The species’ maximal distribution range reaches 756 km between the two single-specimen records and 371 km within the SGS. A very high haplotype diversity was observed, revealing the presence of seven haplotype groups. All the haplogroups were present in the SGS and exhibited distinct spatial-genetic patterns. We thus inferred a high degree of population isolation, with the SGS being a potential long-term refugium for N. puteanus. Historical drift of specimens along major riverine networks (Rhine, Danube) may provide an evolutionary dispersal mechanism explaining the formation of satellite populations. From an ecological perspective, populations of N. puteanus were found to be closely associated with fast-flowing spring environments within fissured aquifers. This species should therefore be classified as both crenophile and stygophile, effectively exploiting resources of surface as well as subsurface spring waters. keywords: distribution; genetic diversity; phylogeography; ecological classification; DNA taxonomy; Niphargus stadleri; Niphargus puteanus Introduction Groundwater comprises the largest fraction of unbound freshwater on Earth and represents the primary drinking water source for half of the global human population (Tushaar, 2007). Despite its paramount importance for human well-being, the recognition of groundwater as an aquatic ecosystem and home for often enigmatic species is still at an early stage. Nevertheless, some 2,000 obligate groundwater metazoans are known from Europe (Gibert and Culver, 2004). These so-called stygobionts are typically characterised by a lack of eye and body pigmentation and a considerably prolonged lifespan compared to their surface-water counterparts (Bellan-Santini, 2015). Stygobionts often have small distribution ranges or are even sometimes known from a single locality only (Trontelj et al., 2009; Fišer et al., 2016). Because of limited resource availability, the subterranean environment presumably supports small local communities (Gibert and Deharveng, 2002). Furthermore, geographically separated communities are often quite distinct in their species pools, suggesting that distribution patterns result from past vicariance events rather than from active migration (Stock, 1993; Trontelj et al., 2009; Culver et al., 2009). The detection of cryptic diversity – in particular for morphospecies assumed to be geographically widespread – is a frequent phenomenon in molecular studies dealing with stygobionts (Zakšek et al., 2009; Camacho et al., 2011; Niemiller et al., 2012; Délic et al., 2017; Eme et al., 2018), where morphospecies are often revealed to harbour more than one distinct molecularly defined species. As a result, estimations about the global number of stygobiont species are in the range of 50,000 – 100,000 (Culver and Holsinger, 1992). Members of the amphipod genus Niphargus are among the most common representatives of groundwater communities of Europe. More than 425 species have been described for the West Palearctic (Horton et al., 2018), with the large majority being strictly stygobiont and inhabiting diverse groundwater habitats. Prominent exceptions comprise Niphargus hrabei and Niphargus valachicus, which have re-colonised surface freshwaters and occur over a wide geographical area (Copilaş- Ciocianu et al., 2018). Subterranean amphipods are frequently used as models in ecology and biogeography (Fišer, 2019). Over the last decade, it has become more and more obvious that our knowledge on the ecology and distribution of many niphargid species is heavily impacted by erroneous or ambiguous past taxonomic assignments (Fišer et al., 2016, 2018a, b). Species delimitation as well species identification based on potentially diagnostic morphological characters seems insufficient as intraspecific and interspecific variability ranges can largely overlap (Fišer et al., 2018b). Adding to this, several Niphargus morphospecies have been revealed to be complexes of cryptic or pseudocryptic species (e.g. McInerney et al., 2014). The latter refers to a population initially considered part of a morphospecies, but identified by molecular data as a separate entity and found out to be distinguishable by morphological characters upon re-investigation. It is thus not surprising that recent studies make use of integrative research designs applying a combination of morphological and molecular characteristics for Niphargus species identification. Molecular species identification using DNA taxonomy (Fontaneto et al., 2015) has the advantage to be applicable to developmental stages (e.g. juveniles) or sexes, which – in case they are not dealt with in taxonomic keys – are regularly omitted. An increase of high-quality occurrence data leads in turn to more robust datasets, which is one the major obstacles for current groundwater ecological and biodiversity research (Zagmajster et al., 2019; Mokany et al., 2019). Probably due to its relatively large body size of up to 2.2 cm in adult males, the first ever described niphargid species was Niphargus puteanus (C.L. Koch in Panzer, 1836) – at that time referred to as Gammarus puteanus. This species is commonly observed in aquatic subterranean biotopes (caves, mining galleries and interstitial) and groundwater discharges (springs and wells) in South-Western Germany (Baden-Württemberg), where it is considered to have its main distribution. Some isolated populations have been described from North and North-Western Germany (Sauerland, Pust, 1990; the Harz Mountains, Hartmann, 1978/79, 2004), Southern Poland (Arndt, 1923), Bulgaria (Bureš, 1929; Beron et al., 2004, referring to Fage, 1926), Switzerland (Moeschler, 1989), Belgium (Leloup and Jacquemart, 1963), France, Italy, Croatia and Slovenia (Wolf, 1934-38). However, morphology-based species records of the past can be questionable. For example, very early records of N. puteanus (or G. puteanus) may actually refer to any groundwater niphargid or even gammarid, as this taxonomic annotation was frequently used as a lumping bin for amphipod populations found in and adapted to the dark (see Brehm, 1955). Likewise, distribution data provided by Schellenberg (1932) remain unclear as he synonymised the species with Niphargus fontanus. Finally, repeated intensive sampling campaigns in the Hölloch cave system (Switzerland) did not re-detect the five previously reported Niphargus species, including N. puteanus (Fišer, et al. 2016): instead, the authors described three new niphargids from this location and emphasised that all past species records from there were probably misidentifications. The species was also historically reported from Belgium, but in their recent survey Fišer et al. (2018a) were not able to re-detect it. In the original description by Koch (1836), the type locality of N. puteanus comprises two wells near Regensburg (Germany, Bavaria) and a well in Zweibrücken (Germany, Rhineland-Palatinate). However, as carefully noted by previous authors (e.g. Wrzesniowski, 1890; Schellenberg, 1933), the two illustrated and investigated specimens were quite different from each other. Moreover, the original material of Koch (1836) seems to be lost (Goedmakers, 1972). For these reasons, Stock (1974) established a neotype and defined a neotype locality referring to the spring Weichselmühle (=Weichslmühle) near Regensburg (South-Western Germany). The present work aimed to provide robust and updated insights into the ecology, genetic diversity, distribution and demographic history of the groundwater amphipod N. puteanus. First, we performed molecular species delimitation to provide high-quality presence records for reconstructing the actual distribution range of the species. Second, the obtained dataset was used to generate insights into the genetic diversity of the species, and to investigate the connectivity (or lack thereof) of the populations sampled. The combined spatio-genetic data were then used to infer the plausibility and potential origin of isolated satellite
Recommended publications
  • Mosquitoes (Diptera: Culicidae) in the Dark—Highlighting the Importance of Genetically Identifying Mosquito Populations in Subterranean Environments of Central Europe
    pathogens Article Mosquitoes (Diptera: Culicidae) in the Dark—Highlighting the Importance of Genetically Identifying Mosquito Populations in Subterranean Environments of Central Europe Carina Zittra 1 , Simon Vitecek 2,3 , Joana Teixeira 4, Dieter Weber 4 , Bernadette Schindelegger 2, Francis Schaffner 5 and Alexander M. Weigand 4,* 1 Unit Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, 1090 Vienna, Austria; [email protected] 2 WasserCluster Lunz—Biologische Station, 3293 Lunz am See, Austria; [email protected] (S.V.); [email protected] (B.S.) 3 Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria 4 Zoology Department, Musée National d’Histoire Naturelle de Luxembourg (MNHNL), 2160 Luxembourg, Luxembourg; [email protected] (J.T.); [email protected] (D.W.) 5 Francis Schaffner Consultancy, 4125 Riehen, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +352-462-240-212 Abstract: The common house mosquito, Culex pipiens s. l. is part of the morphologically hardly or non-distinguishable Culex pipiens complex. Upcoming molecular methods allowed us to identify Citation: Zittra, C.; Vitecek, S.; members of mosquito populations that are characterized by differences in behavior, physiology, host Teixeira, J.; Weber, D.; Schindelegger, and habitat preferences and thereof resulting in varying pathogen load and vector potential to deal B.; Schaffner, F.; Weigand, A.M. with. In the last years, urban and surrounding periurban areas were of special interest due to the Mosquitoes (Diptera: Culicidae) in higher transmission risk of pathogens of medical and veterinary importance.
    [Show full text]
  • Bericht Überwachungsergebnisse Fische 2006 Bis 2014
    Überwachungsergebnisse Fische 2006 bis 2014 Biologisches Monitoring der Fließgewässer gemäß EG-Wasserrahmenrichtlinie Überwachungsergebnisse Fische 2006 bis 2014 Biologisches Monitoring der Fließgewässer gemäß EG-Wasserrahmenrichtlinie BEARBEITUNG LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg Postfach 100163, 76231 Karlsruhe Referat 41 – Gewässerschutz Uwe Bergdolt STAND Dezember 2015 Nachdruck - auch auszugsweise - ist nur mit Zustimmung der LUBW unter Quellenangabe und Überlassung von Belegexemplaren gestattet. ZUSAMMENFASSUNG 5 1 EINLEITUNG 7 2 AUSGANGSLAGE 8 2.1 Das fischbasierte Bewertungsverfahren fiBS 8 2.1.1 Fischökologische Referenzen 8 2.1.2 Fischereiliche Bestandsaufnahme 9 2.1.3 Bewertungsalgorithmus 10 2.1.4 Bewertungsergebnisse im Bereich von Klassengrenzen 12 2.2 Vorarbeiten bis 2010 13 2.2.1 Allgemeine Hinweise 13 2.2.2 Entwicklung des Messnetzes und des Fischmonitorings 14 3 FISCHBASIERTE FLIEßGEWÄSSERBEWERTUNG IN BADEN-WÜRTTEMBERG 16 3.1 Monitoringstellen-Bewertung 16 3.1.1 Zeitraum der fischBestandsaufnahmen 16 3.1.2 Plausibilisierung der Rohdaten 16 3.1.3 Monitoringstellen in erheblich veränderten und künstlichen Wasserkörpern 19 3.1.4 Ergebnisse 19 3.2 Wasserkörper-Bewertung 21 3.2.1 Aggregationsregeln 21 3.2.2 Ergebnisse 24 4 ERLÄUTERUNGEN ZU DEN BEWERTUNGSERGEBNISSEN 27 4.1 Umgang mit hochvariablen Ergebnissen 27 5 KÜNFTIGE ENTWICKLUNGEN 28 5.1 Feinverfahren zur Gewässerstrukturkartierung 28 5.2 Monitoringnetz 28 5.3 Zeitraster der Fischbestandsaufnahmen 30 LITERATUR- UND QUELLENVERZEICHNIS 31 ANHÄNGE 34 Zusammenfassung Im vorliegenden Bericht werden die von der Fischereiforschungsstelle des Landwirtschaftlichen Zentrums für Rinderhaltung, Grünlandwirtschaft, Milchwirtschaft, Wild und Fischerei Baden-Württemberg im Auftrag der LUBW bis zum Sommer 2014 in Baden-Württemberg durchgeführten Arbeiten zur ökologischen Fließ- gewässerbewertung auf Grundlage der Biokomponente Fischfauna gemäß EG-Wasserrahmenrichtlinie (WRRL) erläutert und dokumentiert.
    [Show full text]
  • ST Copyright by the American Historical Society of Germans from Russia, International (AHSGR)
    GEDLIST Copyright by The American Historical Society of Germans from Russia, International (AHSGR). All rights reserved. Compiled July 1, 2017, from GEDCOMS submitted to The American Historical Society of Germans from Russia. International (AHSGR) Submit corrections to: [email protected] None of this data may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written Permission of the copyright holder. For information about obtaining a copy of this data, contact The American Historical Society of Germans from Russia, International (AHSGR). Click the back button on your browser to return to the GEDLIST home page. Birth/*Chr Date and Place not listed for living persons! SURNAME, Given Birth/*Chr Date Birth/*Chr Place Death/*Bur Date S, Friedrika -S778 26 Jan 1865 Neusatz, South Russia SAAB, Douglas Wayne -S622 4-May-59 SAAL, Anna Catharina -S329 SAAL, Anna Maria -S329 SAAL, Johann Adam -S329 SAAL, Johannes -S329 SAAL, Veronica -S329 SAALAR, Charlotte -M196 SAALBACH, Anna Elizabeth -S1117 1 Feb 1713 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany 18 Apr 1760 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany SAALBACH, Johannes -S1117 1 Jan 1683 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany 24 Oct 1734 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany SAALBACH, Johannes -S1117 1 Jan 1683 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany 24 Oct 1734 Weidelbach, Lahn-Dill-Kreis, Hessen, Germany SAAR, Audrey -H209 SAARE, Alfred H -S329 Abt 1880
    [Show full text]
  • Teilbearbeitungsgebiet 35 - Pfinz - Saalbach - Kraichbach
    Begleitdokumentation zum Bearbeitungsgebiet Oberrhein (BW) Teilbearbeitungsgebiet 35 - Pfinz - Saalbach - Kraichbach - Umsetzung der EG-Wasserrahmenrichtlinie (2000/60/EG) Stand: Dezember 2015 BEARBEITUNG Regierungspräsidium Karlsruhe Referat 52 Gewässer und Boden Markgrafenstr. 46 76247 Karlsruhe www.rp-karlsruhe.de unter fachlicher Beteiligung der Landratsämter Enzkreis, Karlsruhe, Rhein-Neckar-Kreis und der Stadtkreise Heidelberg, Karlsruhe, Mannheim und Pforzheim sowie unter Mitwirkung des Ministeriums für Umwelt, Klima und Energiewirtschaft Baden-Württemberg und der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg STAND Dezember 2015 2 Begleitdokumentation BG Oberrhein TBG 35 INHALTSVERZEICHNIS Einführung ............................................................................................................................. 5 Grundlagen und Ziele der Wasserrahmenrichtlinie ............................................................ 5 Gebietskulisse und Planungsebenen in Baden-Württemberg ............................................. 5 Vorgehensweise und Erarbeitungsprozess ........................................................................ 6 Information und Beteiligung der Öffentlichkeit .................................................................... 7 Aufbau und Zielsetzung des Begleitdokuments .................................................................. 7 1 Allgemeine Beschreibung ............................................................................................... 8 1.1 Oberflächengewässer
    [Show full text]
  • The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from Laminated Eifel Maar Sediments of the Last 60,000 Years
    Global and Planetary Change 142 (2016) 108–135 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years F. Sirocko a,⁎,H.Knappa, F. Dreher a, M.W. Förster a, J. Albert a, H. Brunck a, D. Veres d, S. Dietrich b,M.Zechc, U. Hambach c,M.Röhnera, S. Rudert a, K. Schwibus a,C.Adamsa,P.Sigla a Institute for Geosciences, Johannes Gutenberg-University, J.-J. Becherweg 21, D-55128 Mainz, Germany b Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany c BayCEER & LS Geomorphologie Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany d Institute of Speleology, Romanian Academy, Clinicilor 5, RO-400006 Cluj Napoca, Romania article info abstract Article history: Laminated sediment records from several maar lakes and dry maar lakes of the Eifel (Germany) reveal the history of Received 2 February 2015 climate, weather, environment, vegetation, and land use in central Europe during the last 60,000 years. The time se- Received in revised form 3 March 2016 ries of the last 30,000 years is based on a continuous varve counted chronology, the MIS3 section is tuned to the Accepted 7 March 2016 Greenland ice — both with independent age control from 14C dates. Total carbon, pollen and plant macrofossils Available online 7 April 2016 are used to synthesize a vegetation-stack, which is used together with the stacks from seasonal varve formation, flood layers, eolian dust content and volcanic tephra layers to define Landscape Evolution Zones (LEZ).
    [Show full text]
  • Field Significance of Performance Measures in the Context of Regional Climate Model Evaluation
    Theor Appl Climatol DOI 10.1007/s00704-017-2100-2 ORIGINAL PAPER Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature Martin Ivanov1 · Kirsten Warrach-Sagi2 · Volker Wulfmeyer2 Received: 4 July 2016 / Accepted: 13 March 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract A new approach for rigorous spatial analysis of Urban areas in concave topography forms have a warm sum- the downscaling performance of regional climate model mer bias due to the strong heat islands, not reflected in the (RCM) simulations is introduced. It is based on a multiple observations. WRF-NOAH generates appropriate fine-scale comparison of the local tests at the grid cells and is also features in the monthly temperature field over regions of known as “field” or “global” significance. New performance complex topography, but over spatially homogeneous areas measures for estimating the added value of downscaled data even small biases can lead to significant deteriorations rel- relative to the large-scale forcing fields are developed. The ative to the driving reanalysis. As the added value of global methodology is exemplarily applied to a standard EURO- climate model (GCM)-driven simulations cannot be smaller CORDEX hindcast simulation with the Weather Research than this perfect-boundary estimate, this work demonstrates and Forecasting (WRF) model coupled with the land surface in a rigorous manner the clear additional value of dynamical ◦ modelNOAHat0.11 grid resolution. Monthly tempera- downscaling over global climate simulations. The evalu- ture climatology for the 1990–2009 period is analysed for ation methodology has a broad spectrum of applicability Germany for winter and summer in comparison with high- as it is distribution-free, robust to spatial dependence, and resolution gridded observations from the German Weather accounts for time series structure.
    [Show full text]
  • Naturräumlich-Ökologische Analyse Der Flechtenflora Von Deutschland
    624 Herzogia 28 (2) Teil 2, 2015: 624 – 653 Naturräumlich-ökologische Analyse der Flechtenflora von Deutschland Ulf Schiefelbein*, Florian Jansen, Birgit Litterski & Volkmar Wirth Zusammenfassung: Schiefelbein, U., Jansen, F., Litterski, B. & Wirth, V. 2015. Naturräumlich-ökologische Analyse der Flechtenflora von Deutschland. – Herzogia 28: 624 – 653. Die Flechtenflora von Deutschland wird auf der Grundlage der Angaben von Wirth et al. (2013; Die Flechten Deutschlands) analysiert, wobei Naturräume die geografische Basis für die Analysen bilden. Bewertet werden Artendiversität, Exklusivität des Arteninventars, substratspezifische Eigenschaften (Substratbindung, pH-Werte und Nährstoffgehalt/Eutrophierung der besiedelten Substrate) und klimatische Faktoren (Licht, Luftfeuchte). Die artenreichs- ten Naturräume sind nach den Bayerischen Alpen, dem Schwarzwald und Odenwald-Spessart die ebenfalls sehr nieder- schlagsreichen Naturräume Eifel, Weserbergland, Harz, Fränkische Alb, Sauerland und Bayerisch-Böhmischer Wald. Die artenärmsten Landschaften liegen überwiegend im südlichen Teil des Nordostdeutschen Tieflandes. Die Exklusivität des Arteninventars eines Naturraumes wird als Anzahl der Arten, die in Deutschland nach 1950 nur in einem bis zwei Naturräumen nachgewiesen wurden, definiert. In der gesamten Bundesrepublik sind es 638 Arten, davon kommen die meisten in den Bayerischen Alpen, im Schwarzwald, Bayerischen Wald, Odenwald-Spessart und in der Schwäbischen Alb vor. Im gesamten Deutschland überwiegen die Gesteinsbewohner (47,6 % des Gesamtarteninventars),
    [Show full text]
  • Danube Cycle Path Cycling Holidays
    Z:\Allgemeines Profil\Marketing\Präsentationsmappe\4. Vorlagen und Allgemeines\Neue Vorlagen nach CD ab 2015 8 days | approx. 315 km DANUBE CYCLE PATH Schlögener Schlinge at Danube cycle path © OÖ Touristik GmbH Tours that are as individual as you! CYCLING HOLIDAYS DONAUESCHINGEN – DONAUWÖRTH reach Tuttlingen. The Danube winds bike trail or take the highly recommended Donaueschingen in Brigach route along the rivers Ach and Blau via © Radweg-Reisen through the rocks of the Swabian Alps. Blaubeuren with the impressive "Blautopf" Day 3: Mühlheim/Fridingen – Sigmaringen/ (Blue Pot). Your final destination is Ulm on Scheer (approx. 45 – 60 km) The bike trail the border to Bavaria. continues beside the river, past romantic mills and picturesque corners of the valley. Day 6: Ulm – Lauingen/Dillingen Soon Wildenstein Castle comes into view. (approx. 50 – 55 km) After breakfast you You continue to Sigmaringen. Here you can leave Ulm on the well signposted Danube see one of Europe's largest private weap- Cycle Path and pass the frontier between ons collections. Baden-Wuerttemberg and Bavaria. The bike trail leads you via Weißingen to Leipheim, Day 4: Sigmaringen/Scheer – Region Ober- where the St. Veit Church, the Castle, the Day 1: Individual arrival in Donau- marchtal (approx. 50 – 70 km) Today's eschingen The Brigach and Breg Black town walls and city towers are worth a route starts out in the lovely forests and visit. Later on the route takes you via Forest Rivers join to form the Danube near meadows of the open countryside of the the town, but even the Romans thought the Gundelfingen into the medieval ducal town Danube valley.
    [Show full text]
  • Bewirtschaftungsplan Hochrhein, Aktualisierung 2015
    Bewirtschaftungsplan Hochrhein Aktualisierung 2015 (Baden-Württemberg) gemäß EG-Wasserrahmenrichtlinie (2000/60/EG) – Stand: Dezember 2015 – BEARBEITUNG: Regierungspräsidium Freiburg – Referat 51 Bissierstraße 7 79083 Freiburg REDAKTION: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Regierungspräsidien Stuttgart, Karlsruhe, Freiburg, Tübingen Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg Chapeau-Kapitel der Flussgebietsgemeinschaft Rhein Koordinierung und Abstimmung der Vorgehensweisen zur Erstellung der Bewirtschaftungspläne und Maßnahmenprogramme nach Wasserrahmenrichtlinie Stand: 12. November 2015 Impressum: Herausgeber: Flussgebietsgemeinschaft Rhein (FGG Rhein) Ministerium für Umwelt, Klima und Energiewirtschaft Baden- Württemberg Bayerisches Staatsministerium für Umwelt und Verbraucher- schutz Hessisches Ministerium für Umwelt, Klimaschutz, Landwirt- schaft und Verbraucherschutz Niedersächsisches Ministerium für Umwelt, Energie und Klima- schutz Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten des Landes Rheinland-Pfalz Ministerium für Umwelt und Verbraucherschutz des Landes Saarland Thüringer Ministerium für Umwelt, Energie und Naturschutz Bundesministerium für Umwelt, Naturschutz, Bau und Reaktor- sicherheit Redaktion: FGG Rhein - Geschäftsstelle - Am Rhein 1 67547 Worms Tel.: 06131/6033-1560 Fax: 06131/6033-1570 [email protected] www.fgg-rhein.de
    [Show full text]
  • Potential Future Exposure of European Land Transport Infrastructure To
    Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-393 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 2 November 2017 c Author(s) 2017. CC BY 4.0 License. Potential future exposure of European land transport infrastructure to rainfall-induced landslides throughout the 21st century Matthias Schlögl1,2 and Christoph Matulla3 1Transportation Infrastructure Technologies, Austrian Institute of Technology (AIT), Vienna, Austria 2Institute of Applied Statistics and Computing, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria 3Department for Climate Research, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria Correspondence to: Matthias Schlögl ([email protected]), Christoph Matulla ([email protected]) Abstract. In the face of climate change, the assessment of land transport infrastructure exposure towards adverse climate events is of major importance for Europe’s economic prosperity and social wellbeing. Robust and reliable information on the extent of climate change and its projected future impacts on roads and railways are of prime importance for proactive planning and the implementation of targeted adaptation strategies. Among various menacing natural hazards, landslides stand out as 5 most destructive hazards to the functional effectivity and structural integrity of land-bound transport systems, since they cause long-lasting downtimes and exceedingly expensive repair works. Periods of heavy precipitation persisting over several days are known to be a major trigger for increased landslide activity. Along with climate change such events can be expected to increase in frequency, duration and intensity over the decades to come. In this study, a Climate Index (CI) picturing rainfall patterns which trigger landslides in Central Europe is analyzed until 10 the end of this century and compared to present day conditions.
    [Show full text]
  • Neolithic Settlement Dynamics Derived from Archaeological Data and Colluvial Deposits Between the Baar Region and the Adjacent Low Mountain Ranges, Southwest Germany
    Research article E&G Quaternary Sci. J., 68, 75–93, 2019 https://doi.org/10.5194/egqsj-68-75-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Neolithic settlement dynamics derived from archaeological data and colluvial deposits between the Baar region and the adjacent low mountain ranges, southwest Germany Jan Johannes Miera1,2,*, Jessica Henkner2,3, Karsten Schmidt2,3,4, Markus Fuchs5, Thomas Scholten2,3, Peter Kühn2,3, and Thomas Knopf2,6 1Historisches Seminar, Professur für Ur- und Frühgeschichte, Universität Leipzig, Ritterstrasse 14, 04109 Leipzig, Germany 2Sonderforschungsbereich 1070 RessourcenKulturen, Universität Tübingen, Gartenstrasse 29, 72074 Tübingen, Germany 3Research Area Geography, Soil Science and Geomorphology Working Group, Eberhard Karls Universität Tübingen, Rümelinstrasse 19–23, 72070 Tübingen, Germany 4eScience-Center, Eberhard Karls Universität Tübingen, Wilhelmstrasse 32, 72074 Tübingen, Germany 5Department of Geography, Justus Liebig University Giessen, Senckenberstrasse 1, 35390 Giessen, Germany 6Institute for Prehistory, Early History and Medieval Archaeology, Department of Early History, Eberhard Karls Universität Tübingen, Schloss Hohentübingen, 72070 Tübingen, Germany *previously published under the name Jan Johannes Ahlrichs Correspondence: Jan Johannes Miera ([email protected]) Relevant dates: Received: 14 January 2019 – Accepted: 21 May 2019 – Published: 27 June 2019 How to cite: Miera, J. J., Henkner, J., Schmidt, K., Fuchs, M., Scholten, T., Kühn, P., and Knopf, T.: Neolithic settlement dynamics derived from archaeological data and colluvial deposits between the Baar re- gion and the adjacent low mountain ranges, southwest Germany, E&G Quaternary Sci. J., 68, 75–93, https://doi.org/10.5194/egqsj-68-75-2019, 2019. Abstract: The present study combines archaeological data with archaeopedological data from colluvial deposits to infer Neolithic settlement dynamics between the Baar region, the Black Forest and the Swabian Jura.
    [Show full text]
  • Bad Buchau and Bad Schussenried Ending Museum Before Setting Off Again Into the Picturesque Argen Valley
    RAL 3020 Oberschwaben-Allgäu-Weg RAL 4010 Oberschwaben-Allgäu-Weg Lake Constance regional bike trail Danube – Lake Constance Upper Swabia – Allgäu ”A Pope escaping from Konstanz“ 1 Danube regional bike trail 2 (Lindau – Stein am Rhein section) 3 regional bike trail 4 regional bike trail 5 3Worlds bike trail 6 bike trail ä 584 km â 2,372 mà 2,728 m ä 145 km â 176 mà 180 m ä 153 km â 936 mà 984 m ä 357 km â 2,924 mà 2,924 m ä 103 km â 280 mà 280 m ä 47 km â 159 mà 157 m moderate moderate moderate moderate easy easy P 12 days at about 50 km/day P 3 days (of 6) mostly flat P 9 h undulating P 31 h (8 x 2-4 h) hilly P 2 days (of 6) P 3 h 30 min. Experience unique landscapes, pristine nature and culturally rich cities Cyclists following this trail always have two things in view: water and This route leads from the highest spire in the world down to the sho- On this circular route, you’ll get to know everything Upper Swabia In six stages, this trail leads through the three adjacent, yet different, In order to avoid his abdication, Pope John XXIII escaped from the as you bike along the Danube in Germany. Ride along the 609 km mountains, views of countless sailboats bobbing on the waves and res of Lake Constance, connecting two popular, well-known trails: the and the Württemberg Allgäu region are known for.
    [Show full text]